Semiempirical MNDO, AM1, and PM3 direct dynamics trajectory studies of formaldehyde unimolecular dissociation

1996 ◽  
Vol 104 (20) ◽  
pp. 7882-7894 ◽  
Author(s):  
Gilles H. Peslherbe ◽  
William L. Hase
2020 ◽  
Author(s):  
Kenneth Lucas ◽  
George Barnes

We present the results of direct dynamics simulations and DFT calculations aimed at elucidating the effect of \textit{O}-sulfonation on the collision induced dissociation for serine. Towards this end, direct dynamics simulations of both serine and sulfoserine were performed at multiple collision energies and theoretical mass spectra obtained. Comparisons to experimental results are favorable for both systems. Peaks related to the sulfo group are identified and the reaction dynamics explored. In particular, three significant peaks (m\z 106, 88, and 81) seen in the theoretical mass spectrum directly related to the sulfo group are analyzed as well as major peaks shared by both systems. Our analysis shows that the m\z 106 peaks result from intramolecular rearrangements, intermolecular proton transfer among complexes composed of initial fragmentation products, and at high energy side-chain fragmentation. The \mz 88 peak was found to contain multiple constitutional isomers, including a previously unconsidered, low energy structure. It was also seen that the RM1 semi empirical method was not able to obtain all of the major peaks seen in experiment for sulfoserine. In contrast, PM6 did obtain all major experimental peaks.


2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


1995 ◽  
Vol 60 (4) ◽  
pp. 527-536 ◽  
Author(s):  
Martin Breza ◽  
Alena Manová

Using semiempirical MNDO method of quantum chemistry the optimal geometries and corresponding electronic structures of [Pb3(OH)n]6-n model systems as well as of their hydrated [Pb3(OH)n(H2O)8-n]6-n analogues (n = 4, 5) are investigated. The most stable trinuclear lead(II) complexes present in aqueous solutions correspond to cyclo-(μ3-OH)(μ2-OH)3Pb32+, Pb(μ-OH)2Pb(μ-OH)2Pb2+, cyclo-(μ3-OH)2(μ2-OH)3Pb3+, Pb(OH)(μ-OH)2Pb(μ-OH)Pb(OH)+ and Pb(OH)(μ-OH)2Pb(μ-OH)2Pb+ systems. The key role of OH bridges (by vanishing direct Pb-Pb bonds) on the stability of individual isomers is discussed.


2002 ◽  
Vol 122 ◽  
pp. 223-242 ◽  
Author(s):  
Gary Tresadern ◽  
Sara Nunez ◽  
Paul F. Faulder ◽  
Hong Wang ◽  
Ian H. Hillier ◽  
...  

1987 ◽  
Vol 133 (6) ◽  
pp. 531-537 ◽  
Author(s):  
Vincenzo Aquilanti ◽  
Simonetta Cavalli ◽  
Gaia Grossi

Sign in / Sign up

Export Citation Format

Share Document