Impedance response and modeling of composites containing aligned semiconductor whiskers: Effects of dc-bias partitioning and percolated-cluster length, topology, and filler interfaces

2012 ◽  
Vol 111 (12) ◽  
pp. 124913 ◽  
Author(s):  
Brian D. Bertram ◽  
Rosario A. Gerhardt ◽  
John W. Schultz
Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2004 ◽  
Vol 28 (3) ◽  
pp. 275-278
Author(s):  
K. Taguchi ◽  
S. Takahashi ◽  
K. Yamakawa ◽  
K. Ouchi

2021 ◽  
pp. 100019
Author(s):  
Chandrakant Bhogle ◽  
A.B Pandit ◽  
Girish Rao ◽  
Dawid D'Melo ◽  
Subhendu Bhattacharya
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4264
Author(s):  
Michal Gierczynski ◽  
Lech M. Grzesiak ◽  
Arkadiusz Kaszewski

This paper deals with a well-known problem of the transient DC-bias current occurring during a phase shift transition in dual active bridge (DAB) DC/DC converters. This phenomenon, if not compensated, can cause damage to the converter or deteriorate its performance. One aim of this paper is to present a solution which allows for the elimination of the undesired transient DC-bias component in current waveforms. This solution is the dual rising edge shift (DRES) compensation algorithm. It provides a very simple implementation and fast settling time within the first half of a switching period. Moreover, the solution is independent on any measurements or system parameter values. It is based on the double-sided single phase shift (DSSPS) modulation, which is described in detail along with a converter model in steady-state. Then, the mechanisms leading to the transient DC-bias are explained, and the compensation algorithm is derived. The performance of the algorithm has been tested using a laboratory prototype. A comprehensive set of tests, involving rapid step changes in power flow and frequency sweep, are provided. Finally, the features of the proposed algorithm are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document