Non-destructive magneto-strain analysis of YB2Cu3Oy superconducting magnets using neutron diffraction in the time-of-flight mode

2012 ◽  
Vol 112 (6) ◽  
pp. 063923
Author(s):  
M. Tomita ◽  
M. Muralidhar ◽  
K. Suzuki ◽  
A. Ishihara ◽  
Y. Fukumoto ◽  
...  
2021 ◽  
Vol 1016 ◽  
pp. 1291-1298
Author(s):  
Dimitry Sediako ◽  
Joshua Stroh ◽  
Sina Kianfar

Residual stress is one of the main reasons for failure of automotive cylinder blocks and engine heads. These failures are typically associated with in-service distortion or cracking occurring in engines during operation cycles. The problem becomes more pronounced for engines that are running at elevated operating pressures and temperatures, limiting R&D options in developing and implementing higher-efficiency engines. New aluminum alloys and manufacturing methods have been introduced with varying degree of success, in many cases affected by the stress magnitudes and stress distribution in the component. Therefore, active research is ongoing internationally on finding the most reliable methods of stress analysis as a basis for developing efficient methods for stress mitigation. The current study presents a comparison between two experimental strain measurements techniques: a destructive method that is based on application of strain gauge sensors, and a non-destructive method using neutron diffraction. The results indicate that although the strain gauge method provides an indication of the nature (i.e. compression or tension) of strain within a component, this method should primarily be used for surface measurements and qualitative analyses only. Neutron diffraction remains the superior technique for strain analysis, particularly for engineering components with complex geometries. The results from this study provide the transportation industry with a more comprehensive understanding of the efficacy of utilizing strain gauge sensors, neutron diffraction or finite element modelling for measuring the residual strain in cast components. The results will help manufacturers to develop the next generation of powertrain systems with increased efficiency and improved performance.


2021 ◽  
Vol 5 (2) ◽  
pp. 12
Author(s):  
Matthew M. Schmitt ◽  
Daniel J. Savage ◽  
James J. Wall ◽  
John D. Yeager ◽  
Chanho Lee ◽  
...  

The US code of Federal Regulations mandates regular inspection of centrifugally cast austenitic stainless steel pipe, commonly used in primary cooling loops in light-water nuclear power plants. These pipes typically have a wall thickness of ~8 cm. Unfortunately, inspection using conventional ultrasonic techniques is not reliable as the microstructure strongly attenuates ultrasonic waves. Work is ongoing to simulate the behavior of acoustic waves in this microstructure and ultimately develop an acoustic inspection method for reactor inspections. In order to account for elastic anisotropy in the material, the texture in the steel was measured as a function of radial distance though the pipe wall. Experiments were conducted on two 10 × 12.7 × 80 mm radial sections of a cast pipe using neutron diffraction scans of 2 mm slices using the HIPPO time-of-flight neutron diffractometer at the Los Alamos Neutron Science Center (LANSCE, Los Alamos, NM, USA). Strong textures dominated by a small number of austenite grains with their (100) direction aligned in the radial direction of the pipe were observed. ODF analysis indicated that up to 70% of the probed volume was occupied by just three single-grain orientations, consistent with grain sizes of almost 1 cm. Texture and phase fraction of both ferrite and austenite phases were measured along the length of the samples. These results will inform the development of a more robust diagnostic tool for regular inspection of this material.


Sign in / Sign up

Export Citation Format

Share Document