Small amplitude nonlinear electron acoustic solitary waves in weakly magnetized plasma

2013 ◽  
Vol 20 (1) ◽  
pp. 012113 ◽  
Author(s):  
Manjistha Dutta ◽  
Samiran Ghosh ◽  
Rajkumar Roychoudhury ◽  
Manoranjan Khan ◽  
Nikhil Chakrabarti
2004 ◽  
Vol 11 (2) ◽  
pp. 215-218 ◽  
Author(s):  
S. G. Tagare ◽  
S. V. Singh ◽  
R. V. Reddy ◽  
G. S. Lakhina

Abstract. Small amplitude electron - acoustic solitons are studied in a magnetized plasma consisting of two types of electrons, namely cold electron beam and background plasma electrons and two temperature ion plasma. The analysis predicts rarefactive solitons. The model may provide a possible explanation for the perpendicular polarization of the low-frequency component of the broadband electrostatic noise observed in the Earth's magnetotail.


2016 ◽  
Vol 23 (8) ◽  
pp. 082310 ◽  
Author(s):  
S. V. Singh ◽  
S. Devanandhan ◽  
G. S. Lakhina ◽  
R. Bharuthram

2019 ◽  
Vol 85 (1) ◽  
Author(s):  
Frank Verheest ◽  
Manfred A. Hellberg

The plasma model used in a recent paper by Kamalam et al. (J. Plasma Phys., vol. 84, 2018, 905840406) assumes a Boltzmann description for two hot ion species, in the presence of two adiabatic (fluid) electron species, for the study of obliquely propagating acoustic-type nonlinear solitary waves with respect to a static magnetic field. We argue that the assumption of Boltzmann distributions for the hot ions is incorrect, thus invalidating their conclusions, in particular about the possible occurrence of supersolitons in magnetized plasmas.


2019 ◽  
Vol 85 (3) ◽  
Author(s):  
D. Dutta ◽  
K. S. Goswami

An analytical study of the small amplitude electron acoustic double layers in a magnetized plasma consisting of superthermal electrons and ions along with cold fluid electrons is discussed. The dispersion relation allows electron acoustic waves with the frequency within electron and ion gyro-frequency in the modelled plasma. In the process of study of the nonlinear structures, the Sagdeev pseudo-potential method for small amplitude regions is employed. The existence domains for the double layers are investigated in terms of the Mach numbers of the structures and the temperature ratios of the species for different ratios of their concentration. The effects of the compositional parameters on the nature and size of the double layers are also explored and it is observed that the plasma can support both compressive and rarefactive double layers depending on the values of those parameters and the Mach numbers.


Sign in / Sign up

Export Citation Format

Share Document