electron acoustic
Recently Published Documents


TOTAL DOCUMENTS

596
(FIVE YEARS 86)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Vol 1048 ◽  
pp. 205-211
Author(s):  
Hoang Van Ngoc

Conductivity tensor is an important concept in materials, this work studies conductivity tensors in cylindrical quantum wires with parabolic potential in the presence of two external fields, a linearly polarized electromagnetic wave, and a laser field. This work is also only considered for the case of electron-acoustic phonon scattering. Research results are obtained by using quantum kinetic equations for the carrier system in a quantum wire. The conductivity tensor is calculated by solving the quantum kinetic equation of the system, which is a function of the external field frequency, the external field amplitude, the temperature of the helium, and parameters specific to the quantum wire. Results will also be examined and plotted for quantum wire GaAs / GaAsAl.


Author(s):  
Hoang Van Ngoc ◽  
Nguyen Quang Bau ◽  
Doan Minh Quang ◽  
Tran Hai Hung

Based on the quantum kinetic equation (QKE) for electron, we have theoretically studied the theory of photo-stimulated Ettingshausen effect in a one-dimensional cylindrical quantum wire (CQW). The strong electromagnetic wave (EMW) [Formula: see text] plays a role as photo-stimulation source. We obtain the analytic expressions for the kinetic tensors [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and the Ettingshausen coefficient (EC) in the CQW with the dependence on the amplitude and the energy of EMW, the CQW radius, the magnetic field and the temperature for two cases: optical phonon and acoustic phonon. The results are numerically evaluated and graphed for GaAs/AlGaAs CQW model. It is shown that we observe the cyclotron resonance and magneto-phonon resonance effect while surveying EC in terms of magnetic field (with and without EMW) and EMW energy, considered the electron-optical phonon scattering. In case of electron-acoustic phonon scattering, the oscillation of EC is obtained with the transition between low Landau levels (LLs). We also clarify the impact of quantum size effect (QSE) on EC by surveying the influence of EC on the radius of CQW.


2021 ◽  
Author(s):  
Mahmoud Saad Afify ◽  
Zafar Iqbal ◽  
Ghulam Murtaza

Abstract The formation and the characteristics of spin electron acoustic (SEA) soliton in a beam interacting spin polarized electron-hole plasma are investigated. These wavepackets are supposed to be the source of heating during the excitation process. We have used the separate spin evolution-quantum hydrodynamic (SSE-QHD) model along with Maxwell equations and derived the Korteweg-de Vries (KdV) equation by using the reductive perturbation method (RPM). We note that the larger values of beam density and spin polarization can change the soliton nature from rarefactive to compressive. Our findings may be important to understand the characteristics of localized spin dependent nonlinear waves in nanosized semiconductor devices.


2021 ◽  
Vol 28 (11) ◽  
pp. 112102
Author(s):  
Amar P. Misra ◽  
Debjani Chatterjee ◽  
Gert Brodin

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2029
Author(s):  
Wedad Albalawi ◽  
Rabia Jahangir ◽  
Waqas Masood ◽  
Sadah A. Alkhateeb ◽  
Samir A. El-Tantawy

The propagation of electron-acoustic waves (EAWs) in an unmagnetized plasma, comprising (r,q)-distributed hot electrons, cold inertial electrons, and stationary positive ions, is investigated. Both the unmodulated and modulated EAWs, such as solitary waves, rogue waves (RWs), and breathers are discussed. The Sagdeev potential approach is employed to determine the existence domain of electron acoustic solitary structures and study the perfectly symmetric planar nonlinear unmodulated structures. Moreover, the nonlinear Schrödinger equation (NLSE) is derived and its modulated solutions, including first order RWs (Peregrine soliton), higher-order RWs (super RWs), and breathers (Akhmediev breathers and Kuznetsov–Ma soliton) are presented. The effects of plasma parameters and, in particular, the effects of spectral indices r and q, of distribution functions on the characteristics of both unmodulated and modulated EAWs, are examined in detail. In a limited cases, the (r,q) distribution is compared with Maxwellian and kappa distributions. The present investigation may be beneficial to comprehend and predict the modulated and unmodulated electron acoustic structures in laboratory and space plasmas.


Plasma ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 681-731
Author(s):  
Gurbax Singh Lakhina ◽  
Satyavir Singh ◽  
Rajith Rubia ◽  
Selvaraj Devanandhan

Occurrence of electrostatic solitary waves (ESWs) is ubiquitous in space plasmas, e.g., solar wind, Lunar wake and the planetary magnetospheres. Several theoretical models have been proposed to interpret the observed characteristics of the ESWs. These models can broadly be put into two main categories, namely, Bernstein–Green–Kruskal (BGK) modes/phase space holes models, and ion- and electron- acoustic solitons models. There has been a tendency in the space community to favor the models based on BGK modes/phase space holes. Only recently, the potential of soliton models to explain the characteristics of ESWs is being realized. The idea of this review is to present current understanding of the ion- and electron-acoustic solitons and double layers models in multi-component space plasmas. In these models, all the plasma species are considered fluids except the energetic electron component, which is governed by either a kappa distribution or a Maxwellian distribution. Further, these models consider the nonlinear electrostatic waves propagating parallel to the ambient magnetic field. The relationship between the space observations of ESWs and theoretical models is highlighted. Some specific applications of ion- and electron-acoustic solitons/double layers will be discussed by comparing the theoretical predictions with the observations of ESWs in space plasmas. It is shown that the ion- and electron-acoustic solitons/double layers models provide a plausible interpretation for the ESWs observed in space plasmas.


2021 ◽  
Vol 96 (12) ◽  
pp. 125619
Author(s):  
S K Zaghbeer ◽  
E K El-Shewy

2021 ◽  
Vol 87 (5) ◽  
Author(s):  
Pavel A. Andreev

The quantum effects in plasmas can be described by the hydrodynamics containing the continuity and Euler equations. However, novel quantum phenomena are found via the extended set of hydrodynamic equations, where the pressure evolution equation and the pressure flux third-rank tensor evolution equation are included. These give the quantum corrections to the Coulomb interaction. The spectra of the Langmuir waves and the spin-electron acoustic waves are calculated. The application of the pressure evolution equation ensures that the contribution of pressure in the Langmuir wave spectrum is proportional to $(3/5)v_{\textrm {Fe}}^{2}$ rather than $(1/3)v_{\textrm {Fe}}^{2}$ , where $v_{\textrm {Fe}}$ is the Fermi velocity.


Sign in / Sign up

Export Citation Format

Share Document