electrons and ions
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 67)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Francois-Marie Allioux ◽  
Mohammad B. Ghasemian ◽  
Wanjie Xie ◽  
Anthony Peter O'Mullane ◽  
Torben Daeneke ◽  
...  

Post-transition liquid metals (LMs) offer new opportunities for accessing exciting dynamics for nanomaterials. As entities with free electrons and ions as well as fluidity, LM-based nanomaterials are fundamentally different from...


2021 ◽  
Author(s):  
Badriah Alotaibi

Abstract Nonlinear propagation of dust-acoustic waves DAWs in a weakly collisional dusty plasma comprising warm adiabatic fluid dust particles, isothermal electrons, and ions is investigated. We used the reductive perturbation theory to reduce the basic set of fluid equations to one evolution equation, namely damped Kadomtsev--Petviashivili (DKP). The analytical stationary solutions of the DKP equation are numerically analyzed, and the effect of various dusty plasma parameters on DAWs wave propagation is taken into account. We obtained, blast, anti-kink, periodic cnoidal and cnoidal waves. It is well known that explosive waves are a double edged sword. They can be seen, for example, in the atmosphere, or in engineering applications in metal coating. _______________________________________________


Author(s):  
Stefano Coda ◽  
Antoine Merle ◽  
Olivier Sauter ◽  
Laurie Porte ◽  
Filippo Bagnato ◽  
...  

Abstract The favourable confinement properties of negative-triangularity (NT) tokamak configurations were discovered in the TCV tokamak in the late 1990’s and were documented over the two following decades, through investigations of predominantly electron-heated plasmas in limited topologies. The most recent experimental campaign in TCV has marked a leap forward, characterized by the development of a variety of diverted NT shapes that are robustly stable with basic Ohmic heating. The application of auxiliary heating, directed now at both electrons and ions (using electron-cyclotron resonance heating as well as neutral-beam injection), has enabled the achievement of record performances for L-mode plasmas, with normalized β values reaching 2.8 transiently (as well as 2 in steady state, but reverting to a limited configuration) and with comparable ion and electron temperatures. The systematic confinement enhancement with NT is confirmed in these experiments. The L-mode existence space is broader than at positive triangularity, with only sporadic transitions to Hmode observed up to 1.4-MW heating power regardless of the magnetic-field-gradient direction relative to the X-point. These experiments are planned to be continued with even higher power following a heating-source upgrade.


2021 ◽  
Author(s):  
Yao yao ◽  
Songfen Liu ◽  
Kaien Zhu ◽  
Wei Kong ◽  
Jiquan Li ◽  
...  

Abstract Trapped electron modes (TEMs) in tokamak plasmas with anisotropies of electron temperature and its gradient are studied by solving the gyrokinetic integral eigenmode equation. Detailed numerical analyses indicate that, in comparison with that in plasmas of isotropic electron temperature, TEMs are enhanced (weakened) by the anisotropy with temperature in the direction perpendicular to magnetic field higher (lower) than that in the direction parallel to the magnetic field when the latter is kept constant. However, the enhancement is limited such that TEMs are weakened rapidly and even stabilized when the anisotropy is higher than a critic value owing to an effective reduction of bounce movement of the trapped electrons. In addition, it is found that the gradients of perpendicular and parallel temperatures of electrons have driving and suppressing effects on the TEMs, respectively. The overall effects of the temperature gradients of electrons and ions, magnetic shear, safety factor, density gradient on TEMs in the presence of the anisotropies are presented in detail.


2021 ◽  
Author(s):  
Vincent Graber ◽  
Eugenio Schuster

Abstract ITER will be the first tokamak to sustain a fusion-producing, or burning, plasma. If the plasma temperature were to inadvertently rise in this burning regime, the positive correlation between temperature and the fusion reaction rate would establish a destabilizing positive feedback loop. Careful regulation of the plasma’s temperature and density, or burn control, is required to prevent these potentially reactor-damaging thermal excursions, neutralize disturbances and improve performance. In this work, a Lyapunov-based burn controller is designed using a full zero-dimensional nonlinear model. An adaptive estimator manages destabilizing uncertainties in the plasma confinement properties and the particle recycling conditions (caused by plasma-wall interactions). The controller regulates the plasma density with requests for deuterium and tritium particle injections. In ITER-like plasmas, the fusion-born alpha particles will primarily heat the plasma electrons, resulting in different electron and ion temperatures in the core. By considering separate response models for the electron and ion energies, the proposed controller can independently regulate the electron and ion temperatures by requesting that different amounts of auxiliary power be delivered to the electrons and ions. These two commands for a specific control effort (electron and ion heating) are sent to an actuator allocation module that optimally maps them to the heating actuators available to ITER: an electron cyclotron heating system (20 MW), an ion cyclotron heating system (20 MW), and two neutral beam injectors (16.5 MW each). Two different actuator allocators are presented in this work. The first actuator allocator finds the optimal mapping by solving a convex quadratic program that includes actuator saturation and rate limits. It is nonadaptive and assumes that the mapping between the commanded control efforts and the allocated actuators (i.e., the effector model) contains no uncertainties. The second actuator allocation module has an adaptive estimator to handle uncertainties in the effector model. This uncertainty includes actuator efficiencies, the fractions of neutral beam heating that are deposited into the plasma electrons and ions, and the tritium concentration of the fueling pellets. Furthermore, the adaptive allocator considers actuator dynamics (actuation lag) that contain uncertainty. This adaptive allocation algorithm is more computationally efficient than the aforementioned nonadaptive allocator because it is computed using dynamic update laws so that finding the solution to a static optimization problem is not required at every time step. A simulation study assesses the performance of the proposed adaptive burn controller augmented with each of the actuator allocation modules.


2021 ◽  
pp. 1-25
Author(s):  
Hannu E. J. Koskinen ◽  
Emilia K. J. Kilpua

AbstractThe Van Allen radiation belts of high-energy electrons and ions, mostly protons, are embedded in the Earth’s inner magnetosphere where the geomagnetic field is close to that of a magnetic dipole. Understanding of the belts requires a thorough knowledge of the inner magnetosphere and its dynamics, the coupling of the solar wind to the magnetosphere, and wave–particle interactions in different temporal and spatial scales. In this introductory chapter we briefly describe the basic structure of the inner magnetosphere, its different plasma regions and the basics of magnetospheric activity.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012013
Author(s):  
S A Martsinukov ◽  
D K Kostrin

Abstract The paper considers a physical and mathematical model describing the influence of an external transverse magnetic field on the distribution of charged particles in a positive column of a gas discharge. This model is developed in relation to the weakly ionized plasma of a gas-discharge laser. In this case, the plasma flow is considered as an analog of a liquid consisting of two practically independent components – electrons and ions.


2021 ◽  
Author(s):  
Nikita Medvedev ◽  
Alexander E. Volkov

Abstract Formation of swift heavy ion tracks requires extremely fast energy transfer between excited electrons and a lattice. However, electron-phonon energy exchange is too slow, as known from laser-irradiation experiments and calculations. We resolve this contradiction noticing that electron-phonon coupling is not the sole mechanism of energy exchange between electrons and ions: heating of electrons also alters potential energy surface of atoms, accelerating them and increasing their kinetic energy.


2021 ◽  
Vol 127 (6) ◽  
Author(s):  
Daniel Carney ◽  
Hartmut Häffner ◽  
David C. Moore ◽  
Jacob M. Taylor

2021 ◽  
Author(s):  
Sae Aizawa ◽  
Nicolas André ◽  
Ronan Modolo ◽  
Elisabeth Werner ◽  
Jim Slavin ◽  
...  

<p><span lang="EN-GB">BepiColombo is going to conduct its first Mercury flyby in October 2021. During this flyby,  plasma measurement will be obtained and bring new insights on the Hermean magnetosphere and its interaction with the Sun despite the limited field of view of the instruments during the cruise phase. Unlike Mariner-10 ion measurements will be obtained, and unlike MESSENGER, low energy electrons and ions will be measured simultaneously. In this study, we have revisited Mariner 10 and MESSENGER observations with the help of the global hybrid model LatHyS in order to understand the influence of time-variable solar wind and to constraint the plasma environment. We are able to reproduce the magnetic field observations of Mariner 10 along its trajectory with in particular two distinct signatures consisting of a quiet and disturbed state of the magnetosphere. In addition, the plasma spectrogram is also collected in the model and this enables us to detail the properties of the charged particles observed during the flyby. We will discuss all these signatures both in term of an interaction with a time-variable solar wind and localized processes occurring in the magnetosphere. We will then present the virtual sampling of both the magnetic field and plasma spectrogram along BepiColombo’s first Mercury flyby trajectory and discuss the possible signatures to be observed at that time.</span></p>


Sign in / Sign up

Export Citation Format

Share Document