nonthermal electrons
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 26)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 923 (2) ◽  
pp. L33
Author(s):  
Dmitrii Y. Kolotkov ◽  
Valery M. Nakariakov ◽  
Robin Holt ◽  
Alexey A. Kuznetsov

Abstract We present the first multiwavelength simultaneous detection of quasi-periodic pulsations (QPPs) in a superflare (more than a thousand times stronger than known solar flares) on a cool star, in soft X-rays (SXRs, with XMM-Newton) and white light (WL, with Kepler). It allowed for the first ever analysis of oscillatory processes in a stellar flare simultaneously in thermal and nonthermal emissions, conventionally considered to come from the corona and chromosphere of the star, respectively. The observed QPPs have periods 1.5 ± 0.15 hr (SXR) and 3 ± 0.6 hr (WL), and correlate well with each other. The unique relationship between the observed parameters of QPPs in SXR and WL allowed us to link them with oscillations of the electric current in the flare loop, which directly affect the dynamics of nonthermal electrons and indirectly (via ohmic heating) the thermal plasma. These findings could be considered in favor of the equivalent LCR contour model of a flare loop, at least in the extreme conditions of a stellar superflare.


2021 ◽  
Vol 923 (1) ◽  
pp. L14
Author(s):  
Ben Margalit ◽  
Eliot Quataert

Abstract Numerical models of collisionless shocks robustly predict an electron distribution composed of both thermal and nonthermal electrons. Here, we explore in detail the effect of thermal electrons on the emergent synchrotron emission from subrelativistic shocks. We present a complete “thermal + nonthermal” synchrotron model and derive properties of the resulting spectrum and light curves. Using these results, we delineate the relative importance of thermal and nonthermal electrons for subrelativistic shock-powered synchrotron transients. We find that thermal electrons are naturally expected to contribute significantly to the peak emission if the shock velocity is ≳0.2c, but would be mostly undetectable in nonrelativistic shocks. This helps explain the dichotomy between typical radio supernovae and the emerging class of “AT2018cow-like” events. The signpost of thermal electron synchrotron emission is a steep optically-thin spectral index and a ν 2 optically-thick spectrum. These spectral features are also predicted to correlate with a steep postpeak light-curve decline rate, broadly consistent with observed AT2018cow-like events. We expect that thermal electrons may be observable in other contexts where mildly relativistic shocks are present and briefly estimate this effect for gamma-ray burst afterglows and binary–neutron-star mergers. Our model can be used to fit spectra and light curves of events and accounts for both thermal and nonthermal electron populations with no additional physical degrees of freedom.


2021 ◽  
Vol 922 (1) ◽  
pp. L15
Author(s):  
Shigeo S. Kimura ◽  
Kazumi Kashiyama ◽  
Kenta Hotokezaka

Abstract We discuss the prospects for identifying the nearest isolated black holes (IBHs) in our Galaxy. IBHs accreting gas from the interstellar medium likely form magnetically arrested disks (MADs). We show that thermal electrons in the MADs emit optical signals through the thermal synchrotron process while nonthermal electrons accelerated via magnetic reconnections emit a flat-spectrum synchrotron radiation in the X-ray to MeV gamma-ray ranges. The Gaia catalog will include at most a thousand IBHs within ≲1 kpc that are distributed on and around the cooling sequence of white dwarfs (WDs) in the Hertzsprung–Russell diagram. These IBH candidates should also be detected by eROSITA, with which they can be distinguished from isolated WDs and neutron stars. Follow-up observations with hard X-ray and MeV gamma-ray satellites will be useful to unambiguously identify IBHs.


2021 ◽  
Vol 921 (2) ◽  
pp. 179
Author(s):  
Dong Li ◽  
Mingyu Ge ◽  
Marie Dominique ◽  
Haisheng Zhao ◽  
Gang Li ◽  
...  

Abstract Quasi-periodic pulsations (QPPs), which usually appear as temporal pulsations of the total flux, are frequently detected in the light curves of solar/stellar flares. In this study, we present the investigation of nonstationary QPPs with multiple periods during the impulsive phase of a powerful flare on 2017 September 6, which were simultaneously measured by the Hard X-ray Modulation Telescope (Insight-HXMT), as well as the ground-based BLENSW. The multiple periods, detected by applying a wavelet transform and Lomb–Scargle periodogram to the detrended light curves, are found to be ∼20–55 s in the Lyα and mid-ultraviolet Balmer continuum emissions during the flare impulsive phase. Similar QPPs with multiple periods are also found in the hard X-ray emission and low-frequency radio emission. Our observations suggest that the flare QPPs could be related to nonthermal electrons accelerated by the repeated energy release process, i.e., triggering of repetitive magnetic reconnection, while the multiple periods might be modulated by the sausage oscillation of hot plasma loops. For the multiperiodic pulsations, other generation mechanisms could not be completely ruled out.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Debdatta Debnath ◽  
Anup Bandyopadhyay

Abstract At the acoustic speed, we have investigated the existence of ion-acoustic solitary structures including double layers and supersolitons in a collisionless magnetized plasma consisting of negatively charged static dust grains, adiabatic warm ions, and nonthermal electrons. At the acoustic speed, for negative polarity, the system supports solitons, double layers, supersoliton structures after the formation of double layer, supersoliton structures without the formation of double layer, solitons after the formation of double layer whereas the system supports solitons and supersolitons without the formation of double layer for the case of positive polarity. But it is not possible to get the coexistence of solitary structures (including double layers and supersolitons) of opposite polarities. For negative polarity, we have observed an important transformation viz., soliton before the formation of double layer → double layer → supersoliton → soliton after the formation of double layer whereas for both positive and negative polarities, we have observed the transformation from solitons to supersolitons without the formation of double layer. There does not exist any negative (positive) potential solitary structures within 0 < μ < μ c (μ c < μ < 1) and the amplitude of the positive (negative) potential solitary structure decreases for increasing (decreasing) μ and the solitary structures of both polarities collapse at μ = μ c, where μ c is a critical value of μ, the ratio of the unperturbed number density of electrons to that of ions. Similarly there exists a critical value β e2 of the nonthermal parameter β e such that the solitons of both polarities collapse at β e = β e2.


2021 ◽  
pp. 2100017
Author(s):  
Patrick O'Keeffe ◽  
Daniele Catone ◽  
Lorenzo Di Mario ◽  
Francesco Toschi ◽  
Michele Magnozzi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. S. Elkamash ◽  
I. Kourakis

AbstractA one-dimensional multifluid hydrodynamic model has been adopted as basis for an investigation of the role of suprathermal electrons on the wave breaking amplitude limit for electrostatic excitations propagating in an electronegative plasma. A three-component plasma is considered, consisting of two inertial cold ion populations of opposite signs, evolving against a uniform background of (non-Maxwellian) electrons. A kappa-type (non-Maxwellian) distribution function is adopted for the electrons. By employing a traveling wave approximation, the first integral for the fluid-dynamical system has been derived, in the form of a pseudo-energy balance equation, and analyzed. The effect of intrinsic plasma parameters (namely the ion density ratio, the ion mass ratio, and the superthermal index of the nonthermal electrons) on the wave breaking amplitude limit is explored, by analyzing the phase space topology of the associated pseudopotential function. Our results are relevant to particle acceleration in Space environments and to recent experiments based on plasma-based accelerator schemes, where the simultaneous presence of negative ions and nonthermal electrons may be observed.


2021 ◽  
Vol 76 (5) ◽  
pp. 445-454
Author(s):  
Abderrzak Merriche ◽  
Moufida Benzekka ◽  
Rabia Amour

Abstract The head-on collision between two ion-acoustic solitons (IASs) is studied in pair ions plasmas with hybrid Cairns–Tsallis-distributed electrons. The chosen model is inspired from the experimental studies of Ichiki et al. [Phys. Plasmas 8, 4275 (2001)]. The extended Poincaré–Lighthill–Kuo (PLK) method is employed to obtain the phase shift due to the IASs collision. Both analytical and numerical results reveal that the magnitude of the phase shift is significantly affected by the nonthermal and nonextensive parameters (α and q), the number density ratios (μ and υ) as well as the mass ratio σ. For a given mass ratio σ ≃ 0.27 $\sigma \simeq 0.27$ (Ar+, SF 6 − ${\text{SF}}_{6}^{-}$ ), the magnitude of the phase shift Δ Q ( 0 ) ${\Delta}{Q}^{\left(0\right)}$ decreases slightly (increases) with the increase of q (α). The effect of α on Δ Q ( 0 ) ${\Delta}{Q}^{\left(0\right)}$ is more noticeable in the superextensive distribution case (q < 1). As σ increases [ σ ≃ 0.89 $\sigma \simeq 0.89$ (Xe+, SF 6 − ${\text{SF}}_{6}^{-}$ )], the phase shift becomes wider. In other terms, the phase shift was found to be larger under the effect of higher densities of the negative ions. Our findings should be useful for understanding the dynamics of IA solitons’ head-on collision in space environments [namely, D-regions ( H + ${\text{H}}^{+}$ , O 2 − ${\text{O}}_{2}^{-}$ ) and F-regions (H+, H−) of the Earth’s ionosphere] and in laboratory double pair plasmas [namely, fullerene (C+, C−) and laboratory experiment (Ar+, F−)].


2021 ◽  
Author(s):  
Surajit Mondal ◽  
Divya Oberoi ◽  
Ayan Biswas ◽  
Shabbir Bawaji ◽  
Ujjaini Alam ◽  
...  

&lt;p&gt;It has been a long standing problem as to how the solar corona can maintain its million K temperature, while the photosphere, which is the lowest layer of the solar atmosphere, is only at a temperature of 5800 K. A very promising theory to explain this is the &amp;#8220;nanoflare&amp;#8221; hypothesis, which suggests that numerous flares of energies ~10&lt;sup&gt;24&lt;/sup&gt; ergs are always happening in the solar corona, and maintain its million K temperature. However, detecting these nanoflares directly is challenging with the current instrumentation as they are hypothesised to occur at very small spatial, temporal and energy scales. These nanoflares are expected to produce nonthermal electrons, which are expected to emit in the radio band. These nonthermal emissions are often brighter than their thermal counterparts and might be detectable with current radio instruments. Due to their importance multiple searches for these nonthermal emissions have been done, but thus far they have been &amp;#160;limited to active regions. The quiet corona is also hot, and often comprises the bulk of the coronal region, so it is equally important to understand the physical processes which maintain this medium at MK temperatures. We describe the results from our effort to use the data from the Murchison Widefield Array (MWA) to search for impulsive radio emissions in the quiet solar corona. By pushing the detection threshold of nonthermal emission by about two orders of magnitude lower than previous studies, we have uncovered ubiquitous very impulsive nonthermal emissions from the quiet sun. We refer to these emissions as Weak Impulsive Narrowband Quiet Sun Emissions (WINQSEs). Using independent observations spanning very different solar conditions we show that WINQSEs are present throughout the quiet corona at all times. Their occurrence rate lies in the range of many hundreds to about a thousand per minute, implying that on average order 10 or so WINQSEs are present in every 0.5 s MWA image. Preliminary estimates suggest that WINQSEs have a bandwidth of ~2 MHz. Buoyed by &amp;#160;their possible connection to the hypothesised &amp;#8220;nanoflares&amp;#8221;, we are pursuing several projects to characterise and understand them. These include developing machine learning algorithms to identify WINQSEs in radio images and characterise their morphologies; exploring the ability of the present generation EUV and X-ray instruments to estimate the energy corresponding to the brightest of WINQSEs; and attempting very high time resolution imaging to explore their temporal structure. In this talk, I will present the results from the past and ongoing projects about WINQSEs and argue that these might be a key step towards detecting &amp;#8220;nanoflares&amp;#8221; and the resolution of the coronal heating problem.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document