electron distribution
Recently Published Documents


TOTAL DOCUMENTS

1309
(FIVE YEARS 94)

H-INDEX

60
(FIVE YEARS 5)

Author(s):  
Lisa Buschmann ◽  
Ashild Fredriksen

Abstract The information about the electron population of a helicon source plasma that expands along a magnetic nozzle is important for understanding the plasma acceleration across the potential drop that forms in the nozzle. The electrons need an energy higher than the potential drop to escape from the source. At these energies the signal of a Langmuir probe is less accurate. An inverted RFEA measures the high-energy tail of the electrons. To reach the probe, they must have energies above the plasma potential VP, which can vary over the region of the measurement. By constructing a full distribution by applying the electron temperature Te obtained from the electron IV-curve and the VP obtained from the ion collecting RFEA or an emissive probe, a density measure of the hot electron distribution independent of VP can be obtained. The variation of the high-energy tail of the EEDF in both radial and axial directions, in the two different cases of 1) a purely expanding magnetic field nozzle, and 2) a more constricted one by applying current in a third, downstream coil was investigated. The electron densities and temperatures from the source are then compared to two analytic models of the downstream development of the electron density. The first model considers the development for a pure Boltzmann distribution while the second model takes an additional magnetic field expansion into account. A good match between the measured densities and the second model was found for both configurations. The RFEA probe also allows for directional measurement of the electron current to the probe. This property is used to compare the densities from the downstream and upstream directions, showing a much lower contribution of downstream electrons into the source for a purely expanding magnetic field in comparison to the confined magnetic field configuration.


Author(s):  
А.Ю. Попов ◽  
Е.З. Гусаков

A quasi-linear equation which allows describing evolution of electron distribution function and generation of non-inductive currents by helicons is obtained. It is shown that in the analysed case the Fokker-Planck equation can be approximated by a one-dimensional equation in the longitudinal electron velocity space with a diffusion coefficient proportional to the helicon power absorbed by electrons due to Landau damping.


Author(s):  
Koichi Fukuda ◽  
Junichi Hattori ◽  
Hidehiro Asai ◽  
Mariko Ninomiya ◽  
Junya Yaita ◽  
...  

Abstract GaN-based high electron mobility transistors (HEMTs) are expected to have high performance in base station applications. Recently, it was reported that the combination of the Poisson-Schrodinger method and cellular automaton method is effective for predicting the mobility of channel two-dimensional electron gas (2DEG) of GaN HEMTs. In the operation condition of HEMT, the surface electron density of the channel is on the order of 1013 cm-2, and the effect of degeneracy cannot be ignored in calculating the mobility. Since the electron distribution function is always stably obtained by the cellular automaton method, the degeneracy effect can be considered stably. In this paper, through the comparison of different degeneracy evaluation methods, the anisotropy of the electron distribution function under the electric field acceleration is clarified to affect the HEMT mobility prediction significantly.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lukas Broers ◽  
Ludwig Mathey

AbstractFloquet engineering presents a versatile method of dynamically controlling material properties. The light-induced Floquet-Bloch bands of graphene feature band gaps, which have not yet been observed directly. We propose optical longitudinal conductivity as a realistic observable to detect light-induced Floquet band gaps in graphene. These gaps manifest as resonant features in the conductivity, when resolved with respect to the probing frequency and the driving field strength. The electron distribution follows the light-induced Floquet-Bloch bands, resulting in a natural interpretation as occupations of these bands. Furthermore, we show that there are population inversions of the Floquet-Bloch bands at the band gaps for sufficiently strong driving field strengths. This strongly reduces the conductivity at the corresponding frequencies. Therefore our proposal puts forth not only an unambiguous demonstration of light-induced Floquet-Bloch bands, which advances the field of Floquet engineering in solids, but also points out the control of transport properties via light, that derives from the electron distribution on these bands.


Sign in / Sign up

Export Citation Format

Share Document