Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation

2013 ◽  
Vol 20 (3) ◽  
pp. 032307 ◽  
Author(s):  
E. Saberian ◽  
A. Esfandyari-Kalejahi ◽  
A. Rastkar-Ebrahimzadeh ◽  
M. Afsari-Ghazi
2013 ◽  
Vol 79 (5) ◽  
pp. 893-908 ◽  
Author(s):  
M. K. MISHRA ◽  
S. K. JAIN

AbstractIon-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg–de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (αc), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of αc decreases with increase in γ.


Heliyon ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. e05373
Author(s):  
Kazi Asraful Islam ◽  
F. Deeba ◽  
Md. Kamal-Al-Hassan

1985 ◽  
Vol 33 (2) ◽  
pp. 237-248 ◽  
Author(s):  
Y. Nakamura ◽  
J. L. Ferreira ◽  
G. O. Ludwig

Ion-acoustic solitons in a three-component plasma which consists of electrons and positive and negative ions have been investigated experimentally. When the concentration of negative ions is smaller than a certain value, positive or compressive solitons are observed. At the critical concentration, a broad pulse of small but finite amplitude propagates without changing its shape. When the concentration is larger than this value, negative or rarefactive solitons are excited. The velocity and the width of these solitons are measured and compared with predictions of the Korteweg-de Vries equation which takes the negative ions and the ion temperature into consideration. Head-on and overtaking collisions of the rarefactive solitons have been observed to show that the solitons are not affected by these collisions.


2005 ◽  
Vol 71 (1) ◽  
pp. 23-34 ◽  
Author(s):  
TARSEM SINGH GILL ◽  
HARVINDER KAUR ◽  
NARESHPAL SINGH SAINI

The effect on the propagation of ion-acoustic solitons and double layers has been studied in collisionless weakly relativistic plasma consisting of two-electron temperature with isothermal electrons and finite ion temperature. The Korteweg de-Vries (KdV) equation is derived for ion-acoustic solitons propagating in a collisionless plasma. This equation is solved in a stationary frame to obtain the expression for soliton phase velocity, soliton width and peak soliton amplitude. It is observed that these quantities are significantly influenced by the relativistic effect, ion temperature, low-temperature electron density and ratio of cold to hot electron temperatures. Many features expected from hot ion theory and two species electron plasmas automatically emerge. The analysis is further extended to higher order nonlinearity and modified Korteweg de-Vries (mKdV) equation is derived. Even though compressive and rarefactive ion-acoustic solitons are obtained, only rarefactive ion-acoustic double layers are obtained in the present investigation.


Sign in / Sign up

Export Citation Format

Share Document