critical concentration
Recently Published Documents


TOTAL DOCUMENTS

902
(FIVE YEARS 158)

H-INDEX

61
(FIVE YEARS 6)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 323
Author(s):  
Ji-un Jang ◽  
Hae Eun Nam ◽  
Soon Oh So ◽  
Hyeseong Lee ◽  
Geon Su Kim ◽  
...  

In this study, the thermal percolation behavior for the thermal conductivity of nanocomposites according to the lateral size of graphene nanoplatelets (GNPs) was studied. When the amount of GNPs reached the critical concentration, a rapid increase in thermal conductivity and thermal percolation behavior of the nanocomposites were induced by the GNP network. Interestingly, as the size of GNPs increased, higher thermal conductivity and a lower percolation threshold were observed. The in-plane thermal conductivity of the nanocomposite containing 30 wt.% M25 GNP (the largest size) was 8.094 W/m·K, and it was improved by 1518.8% compared to the polymer matrix. These experimentally obtained thermal conductivity results for below and above the critical content were theoretically explained by applying Nan’s model and the percolation model, respectively, in relation to the GNP size. The thermal percolation behavior according to the GNP size identified in this study can provide insight into the design of nanocomposite materials with excellent heat dissipation properties.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Matan Yah Ben Zion ◽  
Yaelin Caba ◽  
Alvin Modin ◽  
Paul M. Chaikin

AbstractWhile motile bacteria display rich dynamics in dense colonies, the phoretic nature of artificial micro-swimmers restricts their activity when crowded. Here we introduce a new class of synthetic micro-swimmers that are driven solely by light. By coupling a light absorbing particle to a fluid droplet we produce a colloidal chimera that transforms optical power into propulsive thermo-capillary action. The swimmers’ internal drive allows them to operate for a long duration (days) and remain active when crowded, forming a high density fluid phase. We find that above a critical concentration, swimmers form a long lived crowded state that displays internal dynamics. When passive particles are introduced, the dense swimmer phase can re-arrange to spontaneously corral the passive particles. We derive a geometrical, depletion-like condition for corralling by identifying the role the passive particles play in controlling the effective concentration of the micro-swimmers.


2021 ◽  
Author(s):  
Nirdosh Dadwal ◽  
Janine Degen ◽  
Jana Sticht ◽  
Tarek Hilal ◽  
Tatjana Wegner ◽  
...  

Intrinsically disordered proteins (IDPs) play a vital role in biological processes that rely on transient molecular compartmentation1. In T cells, the dynamic switching between migration and adhesion mandates a high degree of plasticity in the interplay of adhesion and signaling molecules with the actin cytoskeleton2,3. Here, we show that the N-terminal intrinsically disordered region (IDR) of adhesion- and degranulation-promoting adapter protein (ADAP) acts as a multipronged scaffold for G- and F-actin, thereby promoting actin polymerization and bundling. Positively charged motifs, along a sequence of at least 200 amino acids, interact with both longitudinal sides of G-actin in a promiscuous manner. These polymorphic interactions with ADAP become constrained to one side once F-actin is formed. Actin polymerization by ADAP acts in synergy with a capping protein but competes with cofilin. In T cells, ablation of ADAP impairs adhesion and migration with a time-dependent reduction of the F-actin content in response to chemokine or T cell receptor (TCR) engagement. Our data suggest that IDR-assisted molecular crowding of actin above the critical concentration defines a new mechanism to regulate cytoskeletal dynamics. The principle of IDRs serving as molecular sponges to facilitate regulated self-assembly of filament-forming proteins might be a general phenomenon.


2021 ◽  
Author(s):  
Chong Dai ◽  
Zhaoyi Dai ◽  
Samiridhdi Paudyal ◽  
Saebom Ko ◽  
Yue Zhao ◽  
...  

Abstract Calcite, as one of the most common scales in oilfield can be inhibited by common scale inhibitors. The measurement of calcite nucleation and inhibition is a challenge, because of the difficulty to control pH as a result of CO2 partitioning in and out of the aqueous phase. A new kinetic turbidity test method was developed so that the partial pressure of CO2, pH, and SI can be precisely controlled. Calcite nucleation and inhibition batch tests were conducted under various conditions (SI = 0.24-2.41, T = 4-175 °C, and pH = 5.5-7.5) in the presence of common phosphonate and polymeric inhibitors. Based on experimental results, calcite nucleation and inhibition semi-empirical models are proposed, and the logarithm of the predicted induction time is in good agreement with the measured induction time. The models are also validated with laboratory and field observations. Furthermore, a new BCC CSTR Inhibition (BCIn) test method that applied the Continuous Stirred Tank Reactor (CSTR) theory has been developed, for the first time. This BCIn method was used for calcite inhibitor screening tests and minimum inhibitor concentration (MIC) estimation. By only running one experiment (< 1 hour) for each inhibitor, BCIn method selected the effective inhibitors among 18 common inhibitors under the conditions of SI = 1.23 at 90 °C and pH = 6. It was also found that the critical concentration (Ccrit) from BCIn method has a correlation with the MIC from batch tests. This study provided a simple and reliable solution for conducting calcite scale inhibition tests in an efficient and low-cost way. Furthermore, the newly developed prediction models can be used as guidance for laboratory tests and field applications, potentially saving enormous amounts of time and money.


2021 ◽  
Vol 87 (10) ◽  
pp. 63-73
Author(s):  
Nikolay Mchedlov-Petrossyan ◽  
Mykyta Marfunin ◽  
Volodymyr Klochkov ◽  
Petro Radionov

This article is devoted to the synthesis and characterization of the hydrosol of C70 of the son/nC70 type and to its coagulation by sodium chloride and cetyltrimethylammonium bromide (CTAB). At C70 concentration of 3.3×10–6 M, the electrokinetic potential is ζ= –40 ± 4 mV, the particle size expressed as Zeta-average is 97±3 nm; at higher C70 concentrations, 1.7×10–5 and 6.9×10–5 M, the size stays the same: 99 – 100 nm. The critical concentration of coagulation (CCC) values, were determined using the diameter increasing rate (DIR) on NaCl concentration. The CCCs are concentration-dependent: 250, 145, and 130 mM at C70 concentrations 3.3×10–6, 1.7×10–5, and 6.9×10–5 M, respectively. The CCC for the CTAB surfactant is much lower, about 5×10–3 mM. At 0.02 mM CTAB, however, the overcharging up to ζ = + 40 mV and stabilization of the colloidal particles take place. Interpretation of the hydrosol coagulation by NaCl using the Derjaguin–Landau–Verwey–Overbeek theory makes it possible to determine the Hamaker constant of the C70–C70 interaction in vacuum, if only electrostatic repulsion and molecular attraction are taking into account: AFF ≈ 7×10–20 J. On the other hand, if we use the value AFF = (16.0–16.6)×10–20 J, obtained earlier in the study of organosols, then the data for hydrosols can be explained only by the introduction of an additional type of interactions. Following the terms of Churaev and Derjaguin, one should take into account the structural contribution to the interaction energy, which stabilizes the hydrosol.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7229
Author(s):  
Walerian Arabczyk ◽  
Rafał Pelka ◽  
Izabella Jasińska ◽  
Zofia Lendzion-Bieluń

Iron catalysts for ammonia synthesis/nanocrystalline iron promoted with oxides of potassium, aluminum and calcium were characterized by studying the nitriding process with ammonia in kinetic area of the reaction at temperature of 475 °C. Using the equations proposed by Crank, it was found that the process rate is limited by diffusion through the interface, and the estimated value of the nitrogen diffusion coefficient through the boundary layer is 0.1 nm2/s. The reaction rate can be described by Fick’s first equation. It was confirmed that nanocrystallites undergo a phase transformation in their entire volume after reaching the critical concentration, depending on the active specific surface of the nanocrystallite. Nanocrystallites transform from the α-Fe(N) phase to γ’-Fe4N when the total chemical potential of nitrogen compensates for the transformation potential of the iron crystal lattice from α to γ; thus, the nanocrystallites are transformed from the smallest to the largest in reverse order to their active specific surface area. Based on the results of measurements of the nitriding rate obtained for the samples after overheating in hydrogen in the temperature range of 500–700 °C, the probabilities of the density of distributions of the specific active surfaces of iron nanocrystallites of the tested samples were determined. The determined distributions are bimodal and can be described by the sum of two Gaussian distribution functions, where the largest nanocrystallite does not change in the overheating process, and the size of the smallest nanocrystallites increases with increasing recrystallization temperature. Parallel to the nitriding reaction, catalytic decomposition of ammonia takes place in direct proportion to the active surface of the iron nanocrystallite. Based on the ratio of the active iron surface to the specific surface, the degree of coverage of the catalyst surface with the promoters was determined.


2021 ◽  
Vol 43 (4) ◽  
pp. 240-250
Author(s):  
Ye.P. Mamunya ◽  

This review highlight approaches to the formation of an ordered distribution of conductive filler in polymer blends. This distribution leads to a significant decrease of the percolation threshold in the polymer mixture, i.e. to a decrease in the critical concentration of the filler, at which the transition of the system from a non-conductive to a conductive state occurs. This improves the mechanical properties of the composition and its processability. It is shown that the ordered structure of the filler is formed in the polymer blend upon mixing the components in the melt under the action of three factors - thermodynamic (the ratio between the values of the interfacial tension of the filler-polymer A and filler-polymer B, as well as between polymers A and B), kinetic (the ratio between viscosities of polymer components A and B) and technological (the intensity and temperature of processing, as well as the order of introduction of a filler into a heterogeneous polymer matrix, which can enhance or suppress the effect of thermodynamic or kinetic factors). On the example of the works performed by the author on mixtures of thermoplastics filled with electrically conductive carbon fillers such as carbon black and carbon nanotubes, as well as a metal filler - dispersed iron, with the involvement of literature data on filled polymer blends, the influence of each of the factors on the formation of an ordered structure of the conducting phase in polymer blends is shown.


Author(s):  
Talal AL-Bazali

AbstractSmart gravimetric and swelling techniques were utilized in this work to examine the validity of the Debye Hückel length (κ−1) equation when shale interacts with highly concentrated salt solutions. The swelling and shrinkage behavior of two different shales, when exposed to monovalent and divalent ionic solutions (NaCl, KCl and CaCl2) at concentrations ranging from 2 to 22%w/w was observed and measured. Shale swelling and shrinkage results show that Debye Hückel length (κ−1) equation seems to work adequately at low ionic concentrations where osmotic water flow out of shale plays a major role in decreasing the diffuse double layer thickness by withdrawing water out and thereby shrinking κ−1. At high ionic concentration levels, the flow of associated water into the diffuse double layer negates the withdrawal of osmotic water out of the diffuse double layer which could maintain κ−1 or possibly increase it. Data on measured ionic uptake into shale suggests that excessive ionic diffusion into shale, especially at high concentrations, leads to higher electrical repulsion between alike ions in the diffuse layer which could lead to the expansion of the diffuse double layer thickness. Furthermore, swelling and shrinkage data analysis for shale suggests the existence of a ‘critical concentration’ below which the Debye Hückel length equation works. Above the critical concentration, the validity of the Debye Hückel length equation might be in question. The critical concentration is different for all ions and depends on ionic valence, hydrated ion diameter, and clay type.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alvaro Schwalb ◽  
Rodrigo Cachay ◽  
Ericka Meza ◽  
Tatiana Cáceres ◽  
Amondrea Blackman ◽  
...  

Abstract Objective To determine at two distinct time points the prevalence of resistance to ofloxacin (OFX), the representative class drug of fluoroquinolones (FQs), in M. tuberculosis isolates susceptible to first-line drugs. Results There were 279 M. tuberculosis isolates from the two cohorts (2004–2005: 238 isolates; 2017: 41 isolates) that underwent OFX drug-susceptibility testing (critical concentration: 2 µg/ml). Of 238 isolates in Cohort 1, no resistance to OFX was detected (95% CI 0–0.016); likewise, in Cohort 2, no resistance to OFX was detected in 41 isolates (95% CI 0–0.086). Our findings suggest that FQ use remains a viable option for the treatment of first-line drug-susceptible TB in Peru.


Author(s):  
Abja Keshar Kar ◽  
Bidisa Chattopadhyay ◽  
Ratnadwip Singha ◽  
Abhisikta Barman ◽  
Md Azaharuddin Ahmed ◽  
...  

Abstract We have studied the effect of doping of both magnetic (Co) and nonmagnetic (Mg) ions at the Cu site on phase transition in polycrystalline α-Cu2V2O7 through structural, magnetic, and electrical measurements. x-ray diffraction reveals that Mg doping triggers an onset of α- to β-phase structural transition in Cu2−xMgxV2O7 above a critical Mg concentration xc=0.15, and both the phases coexist up to x=0.25. Cu2V2O7 possesses a non-centrosymmetric(NCSM) crystal structure and antiferromagnetic (AFM) ordering along with a non-collinear spin structure in the α phase, originated from the microscopic Dzyaloshinskii-Moriya(DM) interaction between the neighboring Cu spins. Accordingly, a weak ferromagnetic behavior has been observed up to x=0.25. However, beyond this concentration, Cu2−xMgxV2O7 exhibits complex magnetic properties. A clear dielectric anomaly is observed in α-Cu2−xMgxV2O7 around the magnetic transition temperature, which loses its prominence with the increase in Mg doping. The analysis of experimental data shows that the magnetoelectric coupling is nonlinear, which is in agreement with the Landau theory of continuous phase transitions. Co doping, on the other hand, initiates a sharp α to β phase transition around the same critical concentration xc=0.15 in Cu2−xCoxV2O7 but the ferromagnetic behavior is very weak and can be detected only up to x=0.10. We have drawn the magnetic phase diagram which indicates that the rate of suppression in transition temperature is the same for both types of doping, magnetic (Co) and nonmagnetic (Zn/Mg).


Sign in / Sign up

Export Citation Format

Share Document