scholarly journals Magnetoelastic coupling induced magnetic anisotropy in Co2(Fe/Mn)Si thin films

2014 ◽  
Vol 104 (2) ◽  
pp. 022402 ◽  
Author(s):  
Himanshu Pandey ◽  
P. K. Rout ◽  
Anupam ◽  
P. C. Joshi ◽  
Z. Hossain ◽  
...  
1998 ◽  
Vol 187 (2) ◽  
pp. 154-159 ◽  
Author(s):  
S.S Kang ◽  
X.Y Liu ◽  
X.H Xiang ◽  
G.J Jin ◽  
J.H Du ◽  
...  

2008 ◽  
Vol 354 (47-51) ◽  
pp. 5250-5252 ◽  
Author(s):  
J. Barbosa ◽  
B. Almeida ◽  
A.M. Pereira ◽  
J.P. Araújo ◽  
I. Gomes ◽  
...  

2015 ◽  
Vol 92 (21) ◽  
Author(s):  
J. A. Heuver ◽  
A. Scaramucci ◽  
Y. Blickenstorfer ◽  
S. Matzen ◽  
N. A. Spaldin ◽  
...  

2000 ◽  
Vol 615 ◽  
Author(s):  
P. Gergaud ◽  
C. Lallaizon ◽  
M. Putero ◽  
B. Lépine ◽  
O. Thomas ◽  
...  

ABSTRACTThe growing interest in the behavior of magnetic thin films on semiconductor substrates is due in part to their potential application in spin-sensitive heterostructure devices. High-quality epitaxial Fe(001) thin films can be grown on GaAs(001) substrates because of the small lattice parameter mismatch (−1.4%). Magnetic measurements performed on Fe films thinner than 3 nm have shown that such films exhibit an in-plane uniaxial magnetic anisotropy although an ideal bcc Fe(001) film should have fourfold symmetry. The source of this uniaxial component remains an open question and one of the mechanisms which may contribute to this is the epitaxial strain, through magnetoelastic coupling. Very small strains anisotropies are able to modify the magnetic anisotropy of iron thin films. Moreover the sign and magnitude of the magnetoelastic coupling seem to depend on the film thickness or film strain [1]. In this study, the strain tensor components in two Fe thin films (1.7 and 3.0 nm thick) has been measured by XRD. The magnetic free energy has been derived, using the strain tensor components.


2011 ◽  
Vol 98 (23) ◽  
pp. 231903 ◽  
Author(s):  
F. Greullet ◽  
L. Ebel ◽  
F. Münzhuber ◽  
S. Mark ◽  
G. V. Astakhov ◽  
...  

Author(s):  
A.V. Chzhan ◽  
S.A. Podorozhnyak ◽  
S.M. Zharkov ◽  
S.A. Gromilov ◽  
G.S. Patrin

Sign in / Sign up

Export Citation Format

Share Document