parameter mismatch
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 37)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 6 (1) ◽  
pp. 36
Author(s):  
Pratap Anbalagan ◽  
Raja Ramachandran ◽  
Jehad Alzabut ◽  
Evren Hincal ◽  
Michal Niezabitowski

This research paper deals with the passivity and synchronization problem of fractional-order memristor-based competitive neural networks (FOMBCNNs) for the first time. Since the FOMBCNNs’ parameters are state-dependent, FOMBCNNs may exhibit unexpected parameter mismatch when different initial conditions are chosen. Therefore, the conventional robust control scheme cannot guarantee the synchronization of FOMBCNNs. Under the framework of the Filippov solution, the drive and response FOMBCNNs are first transformed into systems with interval parameters. Then, the new sufficient criteria are obtained by linear matrix inequalities (LMIs) to ensure the passivity in finite-time criteria for FOMBCNNs with mismatched switching jumps. Further, a feedback control law is designed to ensure the finite-time synchronization of FOMBCNNs. Finally, three numerical cases are given to illustrate the usefulness of our passivity and synchronization results.


2022 ◽  
Vol 7 (3) ◽  
pp. 4711-4734
Author(s):  
Xingxing Song ◽  
◽  
Pengfei Zhi ◽  
Wanlu Zhu ◽  
Hui Wang ◽  
...  

<abstract><p>In this paper, we study the exponential synchronization problem of a class of delayed memristive neural networks(MNNs). Firstly, a intermittent control scheme is designed to solve the parameter mismatch problem of MNNs. A discontinuous controller with two tunable scalars is designed, and the upper limit of control gain can be adjusted flexibly. Secondly, an augmented Lyaponov-Krasovskii functional(LKF) is proposed, and vector information of N-order canonical Bessel-Legendre(B-L) inequalities is introduced. LKF method is used to obtain the stability criterion to ensure exponential synchronization of the system. The conservatism of the result decreases with the increase of the order of the B-L inequality. Finally, the effectiveness of the main results is verified by two simulation examples.</p></abstract>


Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 681-718
Author(s):  
Sarbendu Rakshit ◽  
Fatemeh Parastesh ◽  
Sayantan Nag Chowdhury ◽  
Sajad Jafari ◽  
Jürgen Kurths ◽  
...  

Abstract In this paper, the existence (invariance) and stability (locally and globally) of relay interlayer synchronisation (RIS) are investigated in a chain of multiplex networks. The local dynamics of the nodes in the symmetric positions layers on both sides of the non-identical middlemost layer(s) are identical. The local and global stability conditions for this synchronisation state are analytically derived based on the master stability function approach and by constructing a suitable Lyapunov function, respectively. We propose an appropriate demultiplexing process for the existence of the RIS state. Then the variational equation transverse to the RIS manifold for demultiplexed networks is derived. In numerical simulations, the impact of interlayer and intralayer coupling strengths, variations of the system parameter in the relay layers and demultiplexing on the emergence of RIS in triplex and pentaplex networks are explored. Interestingly, in this multiplex network, enhancement of RIS is observed when a type of impurity via parameter mismatch in the local dynamics of the nodes is introduced in the middlemost layer. A common time-lag with small amplitude shift between the symmetric positions and central layers plays an important role for the enhancing of relay interlayer synchrony. This analysis improves our understanding of synchronisation states in multiplex networks with nonidentical layers.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7563
Author(s):  
Haowei Nie ◽  
Jiaqiang Yang ◽  
Rongfeng Deng

Deadbeat predictive current control (DBPCC) has the characteristic of fast current response, but it is sensitive to motor parameters. Observer-based DBPCC can eliminate the steady state current tracking error when parameter mismatch exists. However, the actual current will deviate from the reference current during transient state in the case of inductance mismatch. In this paper, a fast response robust deadbeat predictive current control (FRRDBPCC) method is proposed for surface mounted permanent magnet synchronous motor (SPMSM). Firstly, the current tracking error caused by inductance mismatch during transient state is analyzed in detail. Then, an extended state observer (ESO) is proposed to estimate the lumped disturbance caused by parameter mismatch. Based on discrete time ESO, the predicted currents are used to replace the sampled currents to compensate for one-step delay caused by calculation and sampling. Furthermore, an online inductance identification algorithm and a modified prediction model are proposed. The dq-axis currents can be completely decoupled by updating the inductance in the modified prediction model online, ensuring that the current can track the reference value in two control periods. The proposed method improves robustness against parameter mismatch and guarantees dynamic response performance simultaneously. The experimental results verify the effectiveness of the proposed method.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1610
Author(s):  
Satoshi Utada ◽  
Lucille Després ◽  
Jonathan Cormier

Very high temperature creep properties of twelve different Ni-based single crystal superalloys have been investigated at 1250 °C and under different initial applied stresses. The creep strength at this temperature is mainly controlled by the remaining γ′ volume fraction. Other parameters such as the γ′ precipitate after microstructure evolution and the γ/γ′ lattice parameter mismatch seem to affect the creep strength to a lesser degree in these conditions. The Norton Law creep exponent lies in the range 6–9 for most of the alloys studied, suggesting that dislocation glide and climb are the rate limiting deformation mechanisms. Damage mechanisms in these extreme conditions comprise creep strain accumulation leading to pronounced necking and to recrystallization in the most severely deformed sections of the specimens.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6342
Author(s):  
Zehao Lyu ◽  
Xiang Wu ◽  
Jie Gao ◽  
Guojun Tan

The control performance of the finite control set model predictive current control (FCS-MPCC) for the interior permanent magnet synchronous machine (IPMSM) depends on the accuracy of the mathematical model. A novel robust model predictive current control method based on error compensation is proposed in order to reduce the parameter sensitivity and improve the current control robustness. In this method, the equivalent parameters are obtained from the known voltage and current information at the past time and the error between the predicted current and the actual current at the present time, which is utilized in the two-step prediction process to compensate the parameter mismatch error. Finally, the optimal voltage vector is selected by the cost function. The proposed method is compared with the traditional model predictive current control method through experiments. The experimental results show the effectiveness of the proposed method.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jianfeng Yang ◽  
Yang Liu ◽  
Rui Yan

Model predictive control (MPC) methods are widely used in the power electronic control field, including finite control set model predictive control (FCS-MPC) and continuous control set model predictive control (CCS-MPC). The degree of parameter uncertainty influence on the two methods is the key to evaluate the feasibility of the two methods in power electronic application. This paper proposes a research method to analyze FCS-MPC and CCS-MPC’s influence on the current prediction error of three-phase active power filter (APF) under parameter uncertainty. It compares the performance of the two model predictive control methods under parameters uncertainty. In each sampling period of the prediction algorithm, different prediction error conditions will be produced when FCS-MPC cycles the candidate vectors. Different pulse width modulation (PWM) results will be produced when CCS-MPC solves the quadratic programming (QP) problem. This paper presents the simulation results and discusses the influence of inaccurate modeling of load resistance and inductance parameters on the control performance of the two MPC algorithms, the influence of reference value and state value on prediction error is also compared. The prediction error caused by resistance mismatch is lower than that caused by inductance mismatch, more errors are caused by underestimating inductance values than by overestimating inductance values. The CCS-MPC has a better control effect and dynamic performance in parameter mismatch, and the influence of parameter mismatch is relatively tiny.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3684
Author(s):  
Wenjuan Zhang ◽  
Yu Li ◽  
Gongping Wu ◽  
Zhimeng Rao ◽  
Jian Gao ◽  
...  

In this study, a robust predictive power control (R-PPC) method for an N*3-phase permanent magnet synchronous motor (PMSM) is developed in the field of flywheel energy storage systems application, which can effectively improve robustness against inductance parameter mismatch and compensate for the one-beat delay. Firstly, the mathematical model of the N*3-phase PMSM is illustrated, and the topological structure of the N*3-phase PMSM is established. The R-PPC method of the N*3-phase PMSM is then proposed by using the d–q axis current robust predictive control theory. Robustness factors are adopted to modify the current response values in the proposed robust predictive power controller, which can obtain excellent current control performance under the inductance parameter mismatch. Moreover, the next current predicted value is used to replace the current sampled value in the proposed R-PPC method to eliminate the one-beat delay. Finally, comparative simulation and experimental results verify that the proposed R-PPC method can achieve excellent current track performance and smaller torque ripple under both the charge state and discharge state.


Sign in / Sign up

Export Citation Format

Share Document