lattice parameter
Recently Published Documents


TOTAL DOCUMENTS

2590
(FIVE YEARS 347)

H-INDEX

66
(FIVE YEARS 7)

2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Shmuel Samuha ◽  
Rimon Tamari ◽  
Benjamin Grushko ◽  
Louisa Meshi

The stable ϕ phase that forms below ∼923 K around the Al69.2Cu20.0Cr10.8 composition was found to be hexagonal [P63, a = 11.045 (2), c = 12.688 (2) Å] and isostructural to the earlier reported Al6.2Cu2Re X phase [Samuha, Grushko & Meshi (2016). J. Alloys Compd. 670, 18–24]. Using the structural model of the latter, a successful Rietveld refinement of the XRD data for Al69.5Cu20.0Cr10.5 was performed. Both ϕ and X were found to be structurally related to the Al72.6Cu11.0Cr16.4 ζ phase [P63/m, a = 17.714, c = 12.591 Å; Sugiyama, Saito & Hiraga (2002). J. Alloys Compd. 342, 148–152], with a close lattice parameter c and a τ-times-larger lattice parameter a (τ is the golden mean). The structural relationship between ζ and ϕ was established on the basis of the similarity of their layered structures and common features. Additionally, the strong-reflections approach was successfully applied for the modeling of the ϕ phase based on the structural model of the ζ phase. The latter and the experimental structural model (retrieved following Rietveld refinement) were found to be essentially identical.


Author(s):  
Priya Gupta ◽  
Kuldeep Kumar ◽  
Syed Hasan Saeed ◽  
Narendra Kumar Pandey ◽  
Vernica Verma ◽  
...  

Abstract This research deals with study of enhanced liquefied petroleum gas (LPG) and humidity sensing properties of Sn-doped NiO pellets synthesized by chemical precipitation route. XRD, FTIR, SEM, and UV–Vis studies were employed to understand the effect of Sn doping on the structural, morphological, and optical properties of the NiO nanoparticles. XRD results revealed that doping of tin in NiO had a significant impact on the crystallite size, peak intensity, strain, lattice parameter, etc. The calculated crystallite size of pure and 3 mol% doped NiO was 33.2 nm and 13.3 nm, respectively. SEM micrographs revealed that the structure of the samples was irregular spheres and non-homogeneous. The dependence of LPG sensing properties on the structural and surface morphological properties has also been studied. The maximum response of 30.46% to 2.0 vol% of LPG was observed at room temperature (300 K). The same sample also shows high humidity sensing response of 87.11% towards 90% RH. Graphic abstract


2022 ◽  
Author(s):  
Ali A. Alhazime ◽  
M. ME. Barakat ◽  
Radiyah A. Bahareth ◽  
E. M. Mahrous ◽  
Saad Aldawood ◽  
...  

Abstract In our present work, we applied ex-situ casting procedure to prepare a nanocomposite (NCP) from Makrofol polycarbonate (PC) and CdSe nanoparticles. The CdSe nanoparticles were prepared by thermolysis procedure in the presence of N2 gas flow. Rietveld refinement of x-ray data illustrated that the CdSe accustoms cubic zinc blend structure of a 6.057 Å lattice parameter and 2 nm typical grain size. Samples from the prepared NCP were exposed to γ dosages (20-250 kGy). The modifications induced in the NCP films owing to γ dosages have been studied. The γ irradiation (50-250 kGy) causes the crosslinks that reduces the optical bandgap from 4.15 to 3.81 eV; associated with an increase in dielectric parameters and refractive index. This is attributed to the increase of the mass fraction of the disordered regions as specified by XRD. The PC-CdSe NCP was found to have reaction to color modification which makes it suitable in saleable reproduction on printing press.


Author(s):  
RABIA MUKHTAR ◽  
NAVEED AFZAL ◽  
MOHSIN RAFIQUE ◽  
AMEEQ FAROOQ

Artificial ageing of Al-7075 alloy was performed in a muffle furnace at different temperatures ranging from 120∘C to 190∘C for 3[Formula: see text]h. The formation of MgZn2 precipitates in the aged alloy was confirmed through the XRD data. The lattice parameter and crystallite size of aluminum were increased with the increase of the ageing temperature. The scanning electron microscopy results validated the precipitates of different shapes and sizes in the aged samples. The number density of the precipitates was found to be maximum at 170∘C. The Vickers hardness of Al-7075 alloy was increased from 125[Formula: see text]HV to 172[Formula: see text]HV with an increase of the ageing temperature from 120∘C to 170∘C and then decreased at 190∘C. The electrochemical tests of the un-aged and aged samples (in 3.5[Formula: see text]wt.% NaCl solution) showed a decrease in the corrosion rate (0.003[Formula: see text]mm/y) and an increase in the corrosion potential ([Formula: see text]137[Formula: see text]mV) of the alloy upon ageing up to 150∘C, indicating improvement in its corrosion resistance.


2022 ◽  
Vol 905 ◽  
pp. 91-95
Author(s):  
Fei Wang ◽  
Hui Hui Chen ◽  
Shi Wei Zhang

A series of luminescence phosphors M0.955Al2 –xGaxSi2O8∶Eu2+ (M=Ca, Sr, Ba, x = 0~1.0) were prepared via solid-state reaction in weak reductive atmosphere. The lattice positions were discussed. It was found that when Ga3+ entered MAl2Si2O8 lattice and substituted Al3+, complete solid solutions formed. The lattice parameters (a, b, c) and unit cell volume of phosphors M 0.955Al2 –xGaxSi2O8: Eu2+ (M=Ca, Sr, Ba, x = 0~1.0) increased linearly, the lattice parameters (α, β,γ) of Ca0.955Al2–xGaxSi2O8∶Eu2+(CAS) decreased linearly and the lattice parameter β of Sr0.955Al2–xGaxSi2O8∶Eu2+(SAS) and Ba0.955Al2–xGaxSi2O8∶Eu2+(BAS) increased linearly as Ga3+ content increased.


2022 ◽  
Vol 1048 ◽  
pp. 130-138
Author(s):  
Dinesh Uthra ◽  
M.P. Sharma

In this paper, we have studied the EPR spectra, X-ray diffraction and Raman Analysis, Microstructures-morphology of the Ceria NPs calcined at different temperatures of 700 °C, 850 °C ,these materials have been synthesized by Co precipitation (CPT) method by using Cerium tri-nitrate hexahydrate and potassium carbonate solutions. Then synthesized precipitate was heated at 70 °C for 20 hour. Slow grinding of the precipitate and calcined for 3 hours at different temperatures viz. 700 °C and 850 °C to form fine Cerium oxide powder-Ceria NPs. The EPR measurements were made using continuous wave spectrometer (X-band, Bruker Biospin EMX Plus). The g values were obtained by using diphynelpirichylhydrageyl (DPPH-C18H12N5O6) sample and got g value is around 1.97. This g tensor is decreased when the calcined temperature are increased, EPR parameters are also changed as the calcined temperature increases. When the calcined temperature is increased from 700 °C to 850 °C, a doublet separated, intensity increased. The X-Ray diffraction pattern shows the nature of the Ceria NPs crystal, with a cubic structure and got the lattice parameters 5.392 Å for samples calcined at temperature of 700 °C and 5.357 Å at 850 °C which shows decreasing trend in lattice parameter with calcination temperature. The intensity of Raman peaks is also shifted upwards with a rise in temperature. This intensity difference could be because of the rise in vibrational amplitudes of the closest neighboring bonds because of the increase in particle size 11.3± 1.0 to 15.6± 1.0 nm at calcination temperatures of 700 °C and 850 °C and the Raman peak of peak I, 461 cm-1 and peak II, 463 cm-1 respectively. Other peaks were not observed in this Raman pattern. The EDS analysis confirms the presence of the Ce and O atoms in the synthesized samples. Spherical shapes and homogeneously distributed Ceria NPs and a rather tendency for agglomeration were confirmed.


2022 ◽  
Vol 64 (2) ◽  
pp. 149
Author(s):  
С.Г. Меньшикова ◽  
В.В. Бражкин

Abstract The structure, elemental and phase composition of the eutectic alloy Al86Ni2Со6Gd6 (hereinafter referred to as at.%) During the solidification of the melt from 1500oC at a rate of 1000oC/s under high pressure of 3 and 7 GPa have been investigated by X-ray diffraction analysis and electron microscopy. Solidification of the melt under high pressure leads to a change in the phase composition of the alloy and the formation of an anomalously supersaturated solid solution of α-Al (Gd). At a pressure of 7 GPa, new phases were synthesized: Al3Gd * (like Al3U) containing Co and Ni, with a primitive cube structure (cP4/2) with a lattice parameter a = 4.285 ± 0.002 Angstrem and Al8Co4Gd * (like Al8Cr4Gd) with a tetragonal structure (tI26/1) with parameters a = 8.906 ± 0.003 Angstrem and c = 5.150 ± 0.003 Angstrem. The structure of all the samples obtained is homogeneous, dense, finely dispersed, without shrinkage cavities and pores. The average microhardness of the samples is high due to solid solution and precipitation hardening.


2021 ◽  
Vol 31 (6) ◽  
pp. 335-340
Author(s):  
Ahmed Memdouh Younsi ◽  
Lakhdar Gacem ◽  
Mohamed Toufik Soltani

Trioxides of rubidium, strontium, and ruthenium belong to the family of alkali and alkaline earth ruthenates. SrRuO3 crystallizes in various symmetry classes—orthorhombic, tetragonal, or cubic—whereas RbRuO3 is perovskite (cubic) structured and crystallizes only in the cubic space group Pm3¯¯¯m(No. 221). In this study, we investigated the structural stability as well as the electronic and magnetic properties of two cubic perovskites SrRuO3 and RbRuO3. We established the corresponding lattice parameters, magnetic moments, density of states (DOS), and band structures using ab‑initio density‑functional theory (DFT). Both compounds exhibited a metallic ferromagnetic ground state with lattice parameter values between 3.83 and 3.96 Å; RbRuO3 had magnetic moments between 0.29 and 0.34 µBwhereas SrRuO3 had magnetic moments between 1.33 and 1.66 µB. This study paves way for further RbRuO3 research.


2021 ◽  
Vol 11 (1) ◽  
pp. 191-203
Author(s):  
Toyin Shittu ◽  
Mohammednoor Altarawneh

Abstract Catalytic capacity of ceria mainly stems from a facile switch in the Ce oxidation states from +4 to +4 − x. While various experimental and computational studies pinpoint the reduction chemistry of Ce atom through the creation of oxygen vacancies, the analogous process when ceria surface is decorated with cations remains poorly understood. Where such results are available, a synergy between experimental and first principle calculation is scarce. Niobium materials are evolving and their use in catalysis is being widely investigated due to their high surface acidity and thermal and chemical stability. This study aims to report structural and electronic properties of various configurations of mixed Ce–Nb oxides and elaborates on factors that underpin potential catalytic improvements. Evaluations of the samples through X-ray diffraction (XRD), Fourier transform infrared (FTIR), N2-adsorption–desorption, scanning electron microscope (SEM), energy dispersive spectroscope (EDS), and thermogravimetric (TGA) analyses are examined and discussed. First principles density functional theory (DFT) calculations provide structural features of the Ce–Nb solutions at low concentration of Nb via computing atomic charge distribution. Contraction in the lattice parameter after Nb doping was confirmed with both XRD and DFT results. SEM analysis reveals particle growth at the loading of 50 wt%. FTIR results established the Ce–Nb–O bond at 1,100 cm−1 and the TGA analysis confirms the thermal stability of Nb-doped ceria. Tetrahedral O atoms demonstrate an increase in electronegativity and this in turn facilitates catalytic propensity of the material because the O atoms will exhibit higher affinity for adsorbed reactants. Cerium oxide (CeO2) after Nb doping displays a noticeable band gap narrowing, confirming the possible improvement in the catalytic behavior. The 4d states of the Niobium pentoxide (Nb2O5) is found to fill up the 4f states of CeO2 around the Fermi energy level promoting electrons excitation in the CeO2. Reported electronic, structural, and thermal characteristics herein indicate promising catalytic applications of niobium-promoted ceria.


2021 ◽  
Vol 32 (2) ◽  
pp. 6-11
Author(s):  
Fatimah Arofiati Noor ◽  
Erik Bhekti Yutomo ◽  
Toto Winata

This study investigated the structural and electronic properties of bulk, bilayer, and monolayer SnSe using the density functional theory (DFT) method. We succeeded in calculating the bandgap and identifying accurately the transformation of the band structure from bulk to monolayer systems using generalized gradient approximation. An increase in the lattice parameter a and a decrease in the lattice parameter b were observed when the bulk dimensions were reduced to a monolayer. The reduction of van der Waals interactions when the dimensions of a system are reduced is the main factor that causes changes in lattice parameters. The indirect bandgap of bulk SnSe (0.56 eV, 0.3∆→0.7Σ) becomes wider in the monolayer system (0.94 eV, 0.2∆→0.8Σ). Bandgap widening is predicted due to the emergence of the quantum confinement effect in low-dimensional systems. Furthermore, we found the formation of a quasi-degenerate minimum conduction band in the monolayer SnSe. With the formation of these bands, we predict the monolayer SnSe will have better thermoelectric properties than the bulk or bilayer system. This study provides an in-depth understanding of the electronic structure of SnSe and its correlation to thermoelectric properties.


Sign in / Sign up

Export Citation Format

Share Document