induced magnetic anisotropy
Recently Published Documents


TOTAL DOCUMENTS

385
(FIVE YEARS 29)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
Shintaro Yoshihara ◽  
hideto YANAGIHARA

Abstract We have developed a method to variably induce lattice strains and to quantitatively evaluate the induced magnetic anisotropy. Both tensile and compressive strains were introduced into epitaxial films of cobalt ferrite (CFO) grown on a single crystal MgO(001) substrate using a four-point bending apparatus made of a plastic material fabricated by a 3D printer. The change in magnetic anisotropy due to bending strain can be measured quantitatively by using the conventional magneto-torque meter. The strain-induced magnetic anisotropy increased with the tensile strain and decreased with the compressive strain as expected from a phenomenological magnetoelastic theory. The magnetoelastic constant obtained from the changes in bending strains shows quantitatively good agreement with that of the CFO films with a uniaxial epitaxial strain. This signifies that the magnetoelastic constant can be evaluated by measuring only one film sample with strains applied by using the bending apparatus.


2021 ◽  
Author(s):  
Gong Chen ◽  
Colin Ophus ◽  
Alberto Quintana ◽  
Heeyoung Kwon ◽  
Changyeon Won ◽  
...  

Abstract Magnetic skyrmions are topologically nontrivial spin textures with envisioned applications in energy-efficient magnetic information storage. Toggling the presence of magnetic skyrmions via writing/deleting processes is essential for spintronics applications, which usually require the application of a magnetic or electric field or an electric current. Here we demonstrate the reversible field-free writing/deleting of skyrmions at room temperature, via hydrogen chemisorption/desorption on the surface of Ni and Co films. Supported by Monte-Carlo simulations, the skyrmion creation/annihilation is attributed to the hydrogen-induced magnetic anisotropy change on ferromagnetic surfaces. We also demonstrate the role of hydrogen and oxygen on magnetic anisotropy and skyrmion deletion on other magnetic surfaces. Our results open up new possibilities for designing skyrmionic and magneto-ionic devices.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3433
Author(s):  
Aleksandra Kolano-Burian ◽  
Przemyslaw Zackiewicz ◽  
Agnieszka Grabias ◽  
Anna Wojcik ◽  
Wojciech Maziarz ◽  
...  

In the present work, we investigated in detail the thermal/crystallization behavior and magnetic properties of materials with Fe84.5-xCoxNb5B8.5P2 (x = 0, 5, 10, 15 and 20 at.%) composition. The amorphous ribbons were manufactured on a semi-industrial scale by the melt-spinning technique. The subsequent nanocrystallization processes were carried out under different conditions (with/without magnetic field). The comprehensive studies have been carried out using differential scanning calorimetry, X-ray diffractometry, transmission electron microscopy, hysteresis loop analyses, vibrating sample magnetometry and Mössbauer spectroscopy. Moreover, the frequency (up to 300 kHz) dependence of power losses and permeability at a magnetic induction up to 0.9 T was investigated. On the basis of some of the results obtained, we calculated the values of the activation energies and the induced magnetic anisotropies. The X-ray diffraction results confirm the surface crystallization effect previously observed for phosphorous-containing alloys. The in situ microscopic observations of crystallization describe this process in detail in accordance with the calorimetry results. Furthermore, the effect of Co content on the phase composition and the influence of annealing in an external magnetic field on magnetic properties, including the orientation of the magnetic spins, have been studied using various magnetic techniques. Finally, nanocrystalline Fe64.5Co20Nb5B8.5P2 cores were prepared after transverse thermo-magnetic heat treatment and installed in industrially available portable heating equipment.


2021 ◽  
Vol 122 (6) ◽  
pp. 533-539
Author(s):  
V. A. Lukshina ◽  
N. V. Dmitrieva ◽  
E. G. Volkova ◽  
D. A. Shishkin

Author(s):  
A.V. Chzhan ◽  
S.A. Podorozhnyak ◽  
S.M. Zharkov ◽  
S.A. Gromilov ◽  
G.S. Patrin

2021 ◽  
Vol 91 (12) ◽  
pp. 1848
Author(s):  
А.М. Калашникова ◽  
Н.Е. Хохлов ◽  
Л.А. Шелухин ◽  
А.В. Щербаков

Employing short laser pulses with a duration below 100 fs for changing magnetic state of magnetically-ordered media has developed into a distinct branch of magnetism —femtomagnetism which aims at controlling magnetization at ultimately short timescales. Among plethora of femtomagnetic phenomena, there is a class related to impact of femtosecond pulses on magnetic anisotropy of materials and nanostructures which defines orientation of magnetization, magnetic resonance frequencies and spin waves propagation. We present a review of main experimental results obtained in this field. We consider basic mechanisms responsible for a laser-induced change of various anisotropy types: magnetocrystalline, magnetoelastic, interfacial, shape anisotropy, and discuss specifics of these processes in magnetic metals and dielectrics. We consider several examples and describe features of magnetic anisotropy changes resulting from ultrafast laser-induced heating, impact of laser-induced dynamic and quasistatic strains and resonant excitation of electronic states. We also discuss perspectives of employing various mechanisms of laser-induced magnetic anisotropy change for enabling processes prospective for developing devices. We consider precessional magnetization switching for opto-magnetic information recording, generation of high-frequency strongly localized magnetic excitations and fields for magnetic nanotomography and hybrid magnonics, as well as controlling spin waves propagation for optically-reconfigurable magnonics. We further discuss opportunities which open up in studies of ultrafast magnetic anisotropy changes because of using short laser pulses in infrared and terahertz ranges. 


2020 ◽  
Vol 321 ◽  
pp. 114048
Author(s):  
M. Luo ◽  
Y.D. Li ◽  
K.J. Wang ◽  
Y.H. Shen

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4148
Author(s):  
Jakub Pawlak ◽  
Antoni Żywczak ◽  
Jarosław Kanak ◽  
Marek Przybylski

Changes in stoichiometry, temperature, strain and other parameters dramatically alter properties of LSMO perovskite. Thus, the sensitivity of LSMO may enable control of the magnetic properties of the film. This work demonstrates the capabilities of interface engineering to achieve the desired effects. Three methods of preparing STO substrates were conducted, i.e., using acid, buffer solution, and deionized water. The occurrence of terraces and their morphology depend on the preparation treatment. Terraces propagate on deposited layers and influence LSMO properties. The measurements show that anisotropy depends on the roughness of the substrate, the method of preparing the substrate, and oxygen treatment. The collected results suggest that the dipolar mechanism may be the source of LSMO anisotropy.


Sign in / Sign up

Export Citation Format

Share Document