Large-eddy simulation of offshore wind farm

2014 ◽  
Vol 26 (2) ◽  
pp. 025101 ◽  
Author(s):  
Di Yang ◽  
Charles Meneveau ◽  
Lian Shen
2018 ◽  
Author(s):  
Micah Sandusky ◽  
Rey DeLeon ◽  
Inanc Senocak

Offshore wind turbines are mega structures that span a critical section of the lowest part of atmospheric boundary layer while experiencing significant wind shear. A detailed knowledge of the wind field through a wind farm as part of the atmospheric boundary layer is essential to design efficient farm layouts and estimate power production for grid integration. To address these needs, we present a micro-scale wind prediction model based on a large-eddy simulation paradigm. We consider actuator disk models with and without rotation to simulate the influence of turbines on the wind field and apply our computational capability to the well-known Horns Rev offshore wind farm in Denmark to estimate power production. Instead of using manufacturers power curve to estimate power production, we propose an alternative approach based on the control volume analysis of kinetic energy conservation around turbines.


Wind Energy ◽  
2020 ◽  
Vol 23 (2) ◽  
pp. 423-431
Author(s):  
John Stephen Haywood ◽  
Adrian Sescu ◽  
Kevin Allan Adkins

2017 ◽  
Vol 854 ◽  
pp. 012047 ◽  
Author(s):  
J Wang ◽  
D McLean ◽  
F Campagnolo ◽  
T Yu ◽  
C L Bottasso

2015 ◽  
Vol 8 (4) ◽  
pp. 3481-3522 ◽  
Author(s):  
P. J. H. Volker ◽  
J. Badger ◽  
A. N. Hahmann ◽  
S. Ott

Abstract. We describe the theoretical basis, implementation and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP), uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.


Sign in / Sign up

Export Citation Format

Share Document