An application for nonlinear partial differential equations involving mixed partial derivatives by Laplace substitution method

2014 ◽  
Author(s):  
S. S. Handibag ◽  
B. D. Karande
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


2019 ◽  
Vol 52 (1) ◽  
pp. 482-489 ◽  
Author(s):  
Andriy Bandura ◽  
Oleh Skaskiv ◽  
Liana Smolovyk

AbstractIn the paper we investigate slice holomorphic functions F : ℂn → ℂ having bounded L-index in a direction, i.e. these functions are entire on every slice {z0 + tb : t ∈ℂ} for an arbitrary z0 ∈ℂn and for the fixed direction b ∈ℂn \ {0}, and (∃m0 ∈ ℤ+) (∀m ∈ ℤ+) (∀z ∈ ℂn) the following inequality holds{{\left| {\partial _{\bf{b}}^mF(z)} \right|} \over {m!{L^m}(z)}} \le \mathop {\max }\limits_{0 \le k \le {m_0}} {{\left| {\partial _{\bf{b}}^kF(z)} \right|} \over {k!{L^k}(z)}},where L : ℂn → ℝ+ is a positive continuous function, {\partial _{\bf{b}}}F(z) = {d \over {dt}}F\left( {z + t{\bf{b}}} \right){|_{t = 0}},\partial _{\bf{b}}^pF = {\partial _{\bf{b}}}\left( {\partial _{\bf{b}}^{p - 1}F} \right)for p ≥ 2. Also, we consider index boundedness in the direction of slice holomorphic solutions of some partial differential equations with partial derivatives in the same direction. There are established sufficient conditions providing the boundedness of L-index in the same direction for every slie holomorphic solutions of these equations.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 545-554
Author(s):  
Asghar Ali ◽  
Aly R. Seadawy ◽  
Dumitru Baleanu

AbstractThis article scrutinizes the efficacy of analytical mathematical schemes, improved simple equation and exp(-\text{Ψ}(\xi ))-expansion techniques for solving the well-known nonlinear partial differential equations. A longitudinal wave model is used for the description of the dispersion in the circular rod grounded via transverse Poisson’s effect; similarly, the Boussinesq equation is used for extensive wave propagation on the surface of water. Many other such types of equations are also solved with these techniques. Hence, our methods appear easier and faster via symbolic computation.


Sign in / Sign up

Export Citation Format

Share Document