Predicting the response of small-scale near-wall turbulence to large-scale outer motions

2016 ◽  
Vol 28 (1) ◽  
pp. 015107 ◽  
Author(s):  
Lionel Agostini ◽  
Michael Leschziner
Author(s):  
Nicholas Hutchins ◽  
Ivan Marusic

Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.


2019 ◽  
Vol 871 ◽  
Author(s):  
Lionel Agostini ◽  
Michael Leschziner

An examination is undertaken of the validity and limitations of the quasi-steady hypothesis of near-wall turbulence. This hypothesis is based on the supposition that the statistics of the turbulent fluctuations are universal if scaled by the local, instantaneous, wall shear when its variations are determined from footprints of large-scale, energetic, structures that reside in the outer part of the logarithmic layer. The examination is performed with the aid of direct numerical simulation data for a single Reynolds number, which are processed in a manner that brings out the variability of locally scaled statistics when conditioned on the local value of the wall friction. The key question is to what extent this variability is insignificant, thus reflecting universality. It is shown that the validity of the quasi-steady hypothesis is confined, at best, to a thin layer above the viscous sublayer. Beyond this layer, substantial variations in the conditioned shear-induced production rate of large-scale turbulence cause substantial departures from the hypothesis. Even within the wall-proximate layer, moderate departures are provoked by large-scale distortions in the conditioned strain rate that result in variations in small-scale production of turbulence down to the viscous sublayer.


2011 ◽  
Vol 667 ◽  
pp. 1-37 ◽  
Author(s):  
JIARONG HONG ◽  
JOSEPH KATZ ◽  
MICHAEL P. SCHULTZ

Utilizing an optically index-matched facility and high-resolution particle image velocimetry measurements, this paper examines flow structure and turbulence in a rough-wall channel flow for Reτ in the 3520–5360 range. The scales of pyramidal roughness elements satisfy the ‘well-characterized’ flow conditions, with h/k ≈ 50 and k+ = 60 ~ 100, where h is half height of the channel and k is the roughness height. The near-wall turbulence measurements are sensitive to spatial resolution, and vary with Reynolds number. Spatial variations in the mean flow, Reynolds stresses, as well as the turbulent kinetic energy (TKE) production and dissipation rates are confined to y < 2k. All the Reynolds stress components have local maxima at slightly higher elevations, but the streamwise-normal component increases rapidly at y < k, peaking at the top of the pyramids. The TKE production and dissipation rates along with turbulence transport also peak near the wall. The spatial energy and shear spectra show an increasing contribution of large-scale motions and a diminishing role of small motions with increasing distance from the wall. As the spectra steepen at low wavenumbers, they flatten and develop bumps in wavenumbers corresponding to k − 3k, which fall in the dissipation range. Instantaneous realizations show that roughness-scale eddies are generated near the wall, and lifted up rapidly by large-scale structures that populate the outer layer. A linear stochastic estimation-based analysis shows that the latter share common features with hairpin packets. This process floods the outer layer with roughness-scale eddies, in addition to those generated by the energy-cascading process. Consequently, although the imprints of roughness diminish in the outer-layer Reynolds stresses, consistent with the wall similarity hypothesis, the small-scale turbulence contains a clear roughness signature across the entire channel.


Author(s):  
W. J. Baars ◽  
N. Hutchins ◽  
I. Marusic

Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’.


2019 ◽  
Vol 873 ◽  
pp. 475-507 ◽  
Author(s):  
Junghoon Lee ◽  
Changhoon Lee

We performed two-way coupled direct numerical simulations of turbulent channel flow with Lagrangian tracking of small, heavy spheres at a dimensionless gravitational acceleration of 0.077 in wall units, which is based on the flow condition in the experiment by Gerashchenko et al. (J. Fluid Mech., vol. 617, 2008, pp. 255–281). We removed deposited particles after several collisions with the lower wall and then released new particles near the upper wall to observe direct interactions between particles and coherent structures of near-wall turbulence during gravitational settling through the mean shear. The results indicate that when the Stokes number is approximately 1 on the basis of the Kolmogorov time scale of the flow ($St_{K}\approx 1$), the so-called preferential sweeping occurs in association with coherent streamwise vortices, while the effect of crossing trajectories becomes significant for $St_{K}>1$. Consequently, in either case, the settling particles deposit on the wall without strong accumulation in low-speed streaks in the viscous sublayer. When particles settle through near-wall turbulence from the upper wall, more small-scale vortical structures are generated in the outer layer as low-speed fluid is pulled farther in the direction of gravity, while the opposite is true near the lower wall.


Sign in / Sign up

Export Citation Format

Share Document