Fokker-Planck equation for the non-Markovian Brownian motion in the presence of a magnetic field

2017 ◽  
Vol 147 (16) ◽  
pp. 164102 ◽  
Author(s):  
Joydip Das ◽  
Shrabani Mondal ◽  
Bidhan Chandra Bag
Author(s):  
Ali Khalili Golmankhaneh ◽  
Saleh Ashrafi ◽  
Dumitru Baleanu ◽  
Arran Fernandez

AbstractIn this paper, we have investigated the Langevin and Brownian equations on fractal time sets using Fα-calculus and shown that the mean square displacement is not varied linearly with time. We have also generalized the classical method of deriving the Fokker–Planck equation in order to obtain the Fokker–Planck equation on fractal time sets.


2021 ◽  
pp. 1-7
Author(s):  
Bachir Ouari ◽  
◽  
Malika Madani ◽  
Mohamed Lagraa ◽  
◽  
...  

The magnetization of antiferromagnetic nanoparticles is investigated with the Fokker-Planck equation describing the evolution of the distribution function of the magnetization of an nanoparticle. By solving this equation numerically, the relaxation times, and dynamic susceptibility are calculated for dc field orientations across wide ranges of frequencies, amplitude of the fields and damping. Analytic equation for the dynamic susceptibility is also proposed. It is shown that the damping alters the magnetization in the presence of oblique field applied


1968 ◽  
Vol 23 (4) ◽  
pp. 597-609 ◽  
Author(s):  
Siegfried Hess

A kinetic theory for the Brownian motion of spherical rotating particles is given starting from a generalized Fokker-Planck equation. The generalized Fokker-Planck collision operator is a sum of two ordinary Fokker-Planck differential operators in velocity and angular velocity space respectively plus a third term which provides a coupling of translational and rotational motions. This term stems from a transverse force proportional to the cross product of velocity and angular velocity of a Brownian particle. Collision brackets pertaining to the generalized Fokker-Planck operator are defined and their general properties are discussed. Application of WALDMANN'S moment method to the Fokker-Planck equation yields a set of coupled linear differential equations (transport-relaxation equations) for certain local mean values. The constitutive laws for diffusion, heat conduction by Brownian particles and spin diffusion are deduced from the transport-relaxation equations. The transport-relaxations coefficients appearing in them are given in terms of the two friction coefficients for the damping of translational and rotational motions and a third coefficient which is a measure of the transverse force. By the coupling of translational and rotational motions a diffusion flow gives rise to a correlation of linear and angular velocities.


Sign in / Sign up

Export Citation Format

Share Document