hall current
Recently Published Documents


TOTAL DOCUMENTS

767
(FIVE YEARS 194)

H-INDEX

35
(FIVE YEARS 10)

2022 ◽  
Vol 18 ◽  
Author(s):  
Maria Yasin ◽  
Sadia Hina ◽  
Rahila Naz ◽  
Thabet Abdeljawad ◽  
Muhammad Sohail

Aims:: This article is intended to investigate and determine combined impact of Slip and Hall current on Peristaltic transmission of Magneto-hydrodynamic (MHD) Eyring-Powell fluid. Background: The hall term arises taking strong force-field under consideration. Velocity, thermal and concentration slip conditions are applied. Energy equation is modeled by considering Joule-thermal effect. To observe non-Newtonian behavior of fluid the constitutive equations of Eyring-Powell fluid is encountered. Objective: Flow is studied in a wave frame of reference travelling with velocity of wave. The mathematical modeling is done by utilizing adequate assumptions of long wavelength and low Reynolds number. Method: The closed form solution for momentum, temperature and concentration distribution is computed analytically by using regular perturbation technique for small fluid parameter(A). Results: Graphical results are presented and discussed in detail to analyze behavior of sundry parameters on flow quantities (i.e. velocity, temperature and concentration profile). It is noticed that Powell-Eyring fluid parameters (A,B) have a significant role on the outcomes. Conclusion: The fluid parameter A magnifies the velocity profile whereas, the other fluid parameter B shows the opposite behavior.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Yan Zhang ◽  
Kottakkaran Sooppy Nisar ◽  
Irfan Anjum Badruddin ◽  
...  

AbstractThe present investigation involves the Hall current effects past a low oscillating stretchable rotating disk with Joule heating and the viscous dissipation impacts on a Ferro-nanofluid flow. The entropy generation analysis is carried out to study the impact of rotational viscosity by applying a low oscillating magnetic field. The model gives the continuity, momentum, temperature, magnetization, and rotational partial differential equations. These equations are transformed into the ODEs and solved by using bvp4c MATLAB. The graphical representation of arising parameters such as effective magnetization and nanoparticle concentration on thermal profile, velocity profile, and rate of disorder along with Bejan number is presented. Drag force and the heat transfer rate are given in the tabular form. It is comprehended that for increasing nanoparticle volume fraction and magnetization parameter, the radial, and tangential velocity reduce while thermal profile surges. The comparison of present results for radial and axial velocity profiles with the existing literature shows approximately the same results.


Author(s):  
Rashid Mehmood ◽  
Sehrish Khan ◽  
Ehnber Naheed Maraj ◽  
Shagufta Ijaz ◽  
Siddra Rana

Heat transfer phenomena occur in most of the natural as well as engineering or manufacturing production plants. Such significant industrial processes utilize various modes for the transportation of heat and energy. In this veneration, the existing research is an attempt to explore heat transmission in a viscoplastic fluid under thermal radiation in the presence of ion and Hall current. The properties of Hall and ion current have enormous uses, particularly when measured in the presence of heat transferal phenomena with suction and injection. The most relevant examples of such mechanisms are fridge spirals, magnetohydrodynamics accelerators, and control generators. Also, the field of biomechanics under the influence of these characteristics is widely used especially in the flowing of blood and magnetic resonance imaging, which helps in producing magnetic resonance images of the thorax, abdomen, brain, kidney, etc. Furthermore, directed medication transport inside the human body needs a tough and heavy magnetic field. Hence, these vital applications of Hall and ion current cannot be overlooked. Transport phenomena are examined past a porous elastic sheet. The prevailing physical model is adapted as a non-linear system of ordinary differential equations by means of proper similarity alterations. The graphical representation shows the physical implication of all related constraints on the velocity and temperature distribution of viscoplastic fluids. Momentum, as well as thermal boundary thickness, is significantly affected by Hall currents and ion slip parameters in the presence of suction/injection phenomena. The temperature of the fluid rises for Eckert number and radiation parameter and also the skin friction coefficient at the surface rises with the suction parameter. An excellent match of numerical results correctly up to three decimal places are obtained for the limiting case when compared to the already published literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ji-Huan He ◽  
Doaa R. Mostapha

This paper aims to present the significance of the Hall current and Joule heating impacts on a peristaltic flow of a Rabinowitsch fluid through tapered tube. The Darcy–Forchheimer scheme is used for a porous medium; a mild stenosis is considered to study the impacts of radiative heat transfer and chemical reactions. Convective conditions are postulated for heat and mass transfer. In the meantime, the slip conditions are presumed for the velocity distribution. Soret and Dufour features bring the coupled differential systems. The hypotheses of a long wavelength and low Reynolds number are employed to approximate the governing equations of motion, and finally the homotopy perturbation method is adopted for numerical study. Pumping characteristics are revealed and the trapping procedure correlated with peristaltic transport is elucidated. The present study is very important in many medical applications, such as the gastric juice motion in the small intestine and the flow of blood in arteries. The mechanism of peristaltic transport with mild stenosis has been exploited for industrial applications like sanitary fluid transport and blood pumps in heart-lung machine. The influences of various physical parameters of the problem are debated and graphically drawn across a set of figures. It is noted that the axial velocity is reduced with the increase of the Hartmann number. However, enhancing both the Rabinowitsch parameter and the Forchheimer parameter gives rise to the fluid velocity. As well, it is debated that Rabinowitsch fluid produces a cubic term of pressure gradient. Therefore, the relation between mean flow rate and the pressure rise does not stay linear. It is recognized that the temperature rises with the enhancement of both Dufour number and Soret number. Furthermore, it is illustrated that the concentration impedes with the increase of the mass transfer Biot number. Also, it is revealed that the trapped bolus contracts in size by enlarging the maximum height of stenosis.


Sign in / Sign up

Export Citation Format

Share Document