Radiative corrections to the Coulomb law and model of dense quantum plasmas: Dispersion of longitudinal waves in magnetized quantum plasmas

2018 ◽  
Vol 25 (4) ◽  
pp. 042103 ◽  
Author(s):  
Pavel A. Andreev
2011 ◽  
Vol 64 (2-3) ◽  
pp. 447-452 ◽  
Author(s):  
N. L. Tsintsadze ◽  
L. N. Tsintsadze ◽  
A. Hussain ◽  
G. Murtaza

2021 ◽  
pp. 101420
Author(s):  
Yong Zhi Zhang ◽  
Li Guang Jiao ◽  
Fang Liu ◽  
Ai Hua Liu ◽  
Yew Kam Ho

2021 ◽  
pp. 108128652110108
Author(s):  
Emilio Turco ◽  
Emilio Barchiesi ◽  
Francesco dell’Isola

This contribution presents the results of a campaign of numerical simulations aimed at better understanding the propagation of longitudinal waves in pantographic beams within the large-deformation regime. Initially, we recall the key features of a Lagrangian discrete spring model, which was introduced in previous works and that was tested extensively as capable of accurately forecasting the mechanical response of structures based on the pantographic motif, both in statics and dynamics. Successively, a stepwise integration scheme used to solve equations of motions is briefly discussed. The key content of the present contribution concerns the thorough presentation of some selected numerical simulations, which focus in particular on the propagation of stretch profiles induced by impulsive loads. The study takes into account different tests, by varying the number of unit cells, i.e., the total length of the system, spring stiffnesses, the shape of the impulse, as well as its properties such as duration and peak amplitude, and boundary conditions. Some conjectures about the form of traveling waves are formulated, to be confirmed by both further numerical simulations and analytical investigations.


2021 ◽  
Vol 396 ◽  
pp. 127232
Author(s):  
Zhu-Long Xu ◽  
Shao-Feng Xu ◽  
Kuo-Chih Chuang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document