scholarly journals Oblique propagation of longitudinal spin-electron acoustic waves under the influence of the Coulomb exchange interaction and the quantum Bohm potential

2019 ◽  
Vol 26 (2) ◽  
pp. 022109 ◽  
Author(s):  
Pavel A. Andreev
2000 ◽  
Vol 105 (A6) ◽  
pp. 12919-12927 ◽  
Author(s):  
D. Schriver ◽  
M. Ashour-Abdalla ◽  
V. Sotnikov ◽  
P. Hellinger ◽  
V. Fiala ◽  
...  

Pramana ◽  
2015 ◽  
Vol 86 (4) ◽  
pp. 873-883 ◽  
Author(s):  
KAUSHIK ROY ◽  
SWAPAN KUMAR GHOSH ◽  
PRASANTA CHATTERJEE

2018 ◽  
Vol 25 (10) ◽  
pp. 102115 ◽  
Author(s):  
Pavel A. Andreev ◽  
S. V. Kolesnikov

2014 ◽  
Vol 32 (8) ◽  
pp. 975-989 ◽  
Author(s):  
R. A. Treumann ◽  
W. Baumjohann

Abstract. Coagulation of electrons to form macro-electrons or compounds in high temperature plasma is not generally expected to occur. Here we investigate, based on earlier work, the possibility for such electron compound formation (non-quantum "pairing") mediated in the presence of various kinds of plasma waves via the generation of attractive electrostatic potentials, the necessary condition for coagulation. We confirm the possibility of production of attractive potential forces in ion- and electron-acoustic waves, pointing out the importance of the former and expected consequences. While electron-acoustic waves presumably do not play any role, ion-acoustic waves may potentially contribute to formation of heavy electron compounds. Lower-hybrid waves also mediate compound formation but under different conditions. Buneman modes which evolve from strong currents may also potentially cause non-quantum "pairing" among cavity-/hole-trapped electrons constituting a heavy electron component that populates electron holes. The number densities are, however, expected to be very small and thus not viable for justification of macro-particles. All these processes are found to potentially generate cold compound populations. If such electron compounds are produced by the attractive forces, the forces provide a mechanism of cooling a small group of resonant electrons, loosely spoken, corresponding to classical condensation.


2006 ◽  
Author(s):  
Francesco Valentini ◽  
Thomas M. O’Neil ◽  
Daniel H. E. Dubin

Sign in / Sign up

Export Citation Format

Share Document