scholarly journals Osmotic pressure of permeable ionic microgels: Poisson-Boltzmann theory and exact statistical mechanical relations in the cell model

2019 ◽  
Vol 151 (7) ◽  
pp. 074903 ◽  
Author(s):  
Alan R. Denton ◽  
Mohammed O. Alziyadi
2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Brandon K. Zimmerman ◽  
Robert J. Nims ◽  
Alex Chen ◽  
Clark T. Hung ◽  
Gerard A. Ateshian

Abstract The osmotic pressure in articular cartilage serves an important mechanical function in healthy tissue. Its magnitude is thought to play a role in advancing osteoarthritis. The aims of this study were to: (1) isolate and quantify the magnitude of cartilage swelling pressure in situ; and (2) identify the effect of salt concentration on material parameters. Confined compression stress-relaxation testing was performed on 18 immature bovine and six mature human cartilage samples in solutions of varying osmolarities. Direct measurements of osmotic pressure revealed nonideal and concentration-dependent osmotic behavior, with magnitudes approximately 1/3 those predicted by ideal Donnan law. A modified Donnan constitutive behavior was able to capture the aggregate behavior of all samples with a single adjustable parameter. Results of curve-fitting transient stress-relaxation data with triphasic theory in febio demonstrated concentration-dependent material properties. The aggregate modulus HA increased threefold as the external concentration decreased from hypertonic 2 M to hypotonic 0.001 M NaCl (bovine: HA=0.420±0.109 MPa to 1.266±0.438 MPa; human: HA=0.499±0.208 MPa to 1.597±0.455 MPa), within a triphasic theory inclusive of osmotic effects. This study provides a novel and simple analytical model for cartilage osmotic pressure which may be used in computational simulations, validated with direct in situ measurements. A key finding is the simultaneous existence of Donnan osmotic and Poisson–Boltzmann electrostatic interactions within cartilage.


2009 ◽  
Vol 131 (9) ◽  
pp. 094903 ◽  
Author(s):  
Gil C. Claudio ◽  
Kurt Kremer ◽  
Christian Holm
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document