swelling pressure
Recently Published Documents


TOTAL DOCUMENTS

533
(FIVE YEARS 139)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 62 (1) ◽  
pp. 101099
Author(s):  
Hailong Wang ◽  
Kunlin Ruan ◽  
Satoru Harasaki ◽  
Hideo Komine

2022 ◽  
Author(s):  
Mohamed Sakr ◽  
Waseim Azzam ◽  
Mohamed Meguid ◽  
Hebatalla Ghoneim

Abstract Expansive soils are found in many parts of the world, especially in arid areas and dry weather regions. Urbanization and development of new cities around the world resulted in construction in areas of challenging subsurface soil conditions. For example, in the Middle East, the Government of Egypt is building several new cities to accommodate the continuous increase in the country’s population. Most of these new cities are located in areas underlain by expansive soils. In this study, a series of laboratory tests were carried out to investigate the effect of introducing micro-metakaolin into the matrix of an expansive soil to improve the swelling potential as a new stabilizing material. Test results showed that micro-metakaolin can considerably decrease the free swell index of the soil by 37% and 54% at micro-metakaolin content of 15% and 25%, respectively. In addition, the shear strength of the soil was found to also increase as a result of the introduction of the micro-metakaolin material. Adding 25% micro-metakaolin content reduced the swelling pressure of the soil by about 33%. The results suggest that the proposed method is efficient in stabilizing and improving the properties of expansive soils found in arid areas. This is important to control excessive swelling and prevent possible damage to the supported structures.


2022 ◽  
Vol 10 (1) ◽  
pp. 144-151
Author(s):  
Arif Afrianto ◽  
Ary Setyawan ◽  
Bambang Setiawan ◽  
Wibowo Wibowo

2021 ◽  
Vol 3 (2) ◽  
pp. 44-51
Author(s):  
Talal Masoud ◽  
Abdulrazzaq Jawish Alkherret

  In this study for factors effecting the swelling pressure of jerash expansive soils were investigated in this study, effect of initial dry density and effect of initial water content on the jerash expansive soil were investigated.It show that as the initial dry density decrease from 1.85 gm/cm3  to1.25 gm/cm3 , the swelling pressure also decrease are from 3.1  to 0.25gm/cm2   also it show that as the initial water content increase from 0%to 15% , the swelling pressure of jerash expansive soil decrease from 2.65 gm/cm2  to 1.35 gm/cm2  .  


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3295
Author(s):  
Abdelaziz El Shinawi ◽  
Rehab Ali Ibrahim ◽  
Laith Abualigah ◽  
Martina Zelenakova ◽  
Mohamed Abd Elaziz

The swelling potentiality is a vital property of fine-grained soils strictly related to the index properties and chemical composition. The integration of machine learning techniques and geotechnical parameters provided a new integrative approach for predicting the free swelling index (FSI) and the swelling pressure (SP). In this paper, an adaptive neuro-fuzzy inference system (ANFIS) using named Reptile Search Algorithm (RSA) is presented to predict the swelling potentiality for fine-grained soils in the foundation bed at El Sherouk city, Egypt. The developed predictive model, named RSA-ANFIS, used as input measured 108 natural fine-grained soil samples of index geotechnical parameters and chemical composition as input data and the measured data of the free swelling index and the swelling pressure as output data. To justify the performance of the developed model, a comparative study was carried out, and the results show that the developed RSA-ANFIS has a high performance over the competitive methods in terms of coefficient of determination, root mean square error (RMSE), and mean absolute error (MAE). This new integrative approach is considered at the highly developed stage to predict and improve the analysis of multi-parameter soil behavior and could be applied in other objective variable datasets.


2021 ◽  
Vol 11 (24) ◽  
pp. 12021
Author(s):  
José Nespereira ◽  
José Antonio Blanco ◽  
Mercedes Suárez ◽  
Emilia García-Romero ◽  
Mariano Yenes ◽  
...  

The Dueñas Clay Formation is considered an example of a deposit of lacustrine continental origin. It is formed mainly by overconsolidated clays and includes feldspathic arenites, and clayey and silty levels; however, in geotechnical projects it is considered a clay unit and treated as a whole. The structure of each level was assessed in the field, in thin sections, and by SEM in the case of the clayey level. In addition, identification, strength, deformation, and durability tests were undertaken according to the nature of the samples (grain size analysis, Atterberg Limits, point load test, direct shear tests, uniaxial compression tests, swelling pressure, and unidimensional consolidation tests). The durability test was used as a criterion for dividing the levels within the formation according to their behavior as soil or rock. It was observed that the proportion and type of carbonate cementation controls the way in which the material behaves, with sparithic cement increasing the strength. The clay levels are expansive due to the presence of smectite, which also influences their behavior under shear stress. In addition, the massive and laminar structure of the layers caused by the continental conditions, in addition to the processes of post-sedimentation, explain their low compressibility.


2021 ◽  
Vol 15 (1) ◽  
pp. 360-369
Author(s):  
Monther Abdel Hadi ◽  
Ibrahim Khliefat ◽  
Nafeth Abdelhadi ◽  
Nidhal Saada

Introduction: Jordan is awarded huge areas in the north and western part of the country in which brown and green clay is dominant. This research focuses on the problems and behaviour of the green clay only. The main problem of the green clay is its high swelling pressure which is the main cause of excessive settlement and wall cracks in buildings, especially during the wet season. Methods: This study aims to investigate the engineering properties and behaviour of the green clay deposits in the Amman area, which will serve as a guide for both geotechnical and structural engineers when preparing the foundation design. Results: Based on the consolidation test, the investigated green clay showed high swelling pressure of 3.11 kg/cm2, liquid limit (LL) of 73%, plasticity index (PI) of 40%, the shrinkage limit (SL) of 12%, and liquidity index (LI) of 0.125. The moisture content at saturation is 35.14%, while the natural moisture content is 28%, dry density is 1407 kg/m3, cohesion (C) is 0.20 kg/cm2 and unconfined compressive strength is 1.05 kg/cm2. The XRD results of the clay size fraction have confirmed the presence of the expansive clay mineral smectite as the essential clay mineral together with kaolinite. Results provide a general understanding of the behaviour and properties of the green clay, and the regression analysis showed good correlations between the liquid limit and initial moisture content with the compression index and also between the initial void ratios with the swelling index. Conclusion: Changes in the volume are due to the unsaturation level of clay when provided with initial water content.


2021 ◽  
Vol 26 (4) ◽  
pp. 167-178
Author(s):  
A.N. Mohammed ◽  
A.A. Khalil

Abstract The current study aims to investigate the effects of swell pressure on the bearing capacity of swelling soil. A model and some laboratory tests have been created to investigate the swell pressure effect on the bearing capacity variation of soil swelling due to swelling pressure. The influence of varying water content w/c and dry unit weight (γ d ) on the shear strength and swelling pressure was studied. The soil has been taken from Diwan Residential Compound-Mosul. It is classified as highly swelling soil. The swell pressure of soils at their natural water content reached 385 kN / m2 . Experiment results show that the parameters of shear resistance decreased with the w/c increase at the constant value of (γ d ), increased with the (γd ) increase when the w/c was constant. Results show that the swelling pressure decreased with the w/c increase, while it increased with the (γ d ) increase. Also, the results obtained using was model show that the resistance of bearing capacity of pre-saturated selected soil was 196 kN / m 2, while the bearing capacity was 620kN / m 2 when taking into account in the generation of swelling pressure.


Sign in / Sign up

Export Citation Format

Share Document