scholarly journals Rank reduced coupled cluster theory. I. Ground state energies and wavefunctions

2019 ◽  
Vol 150 (16) ◽  
pp. 164118 ◽  
Author(s):  
Robert M. Parrish ◽  
Yao Zhao ◽  
Edward G. Hohenstein ◽  
Todd J. Martínez
2018 ◽  
Vol 17 (02) ◽  
pp. 1850016 ◽  
Author(s):  
Jiang Yi ◽  
Feiwu Chen

Applications of the multireference linearized coupled-cluster single-doubles (MRLCCSD) to atomic and molecular systems have been carried out. MRLCCSD is exploited to calculate the ground-state energies of HF, H2O, NH3, CH4, N2, BF, and C2with basis sets, cc-pVDZ, cc-pVTZ and cc-pVQZ. The equilibrium bond lengths and vibration frequencies of HF, HCl, Li2, LiH, LiF, LiBr, BH, and AlF are computed with MRLCCSD and compared with the experimental data. The electron affinities of F and CH as well as the proton affinities of H2O and NH3are also calculated with MRLCCSD. These results are compared with the results produced with second-order perturbation theory, linearized coupled-cluster doubles (LCCD), coupled-cluster doubles (CCD), coupled-cluster singles and doubles (CCSD), CCSD with perturbative triples correction (CCSD(T)). It is shown that all results obtained with MRLCCSD are reliable and accurate.


2021 ◽  
pp. e1968056
Author(s):  
Simon Thomas ◽  
Florian Hampe ◽  
Stella Stopkowicz ◽  
Jürgen Gauss

2017 ◽  
Vol 13 (3) ◽  
pp. 1209-1218 ◽  
Author(s):  
James McClain ◽  
Qiming Sun ◽  
Garnet Kin-Lic Chan ◽  
Timothy C. Berkelbach

Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


2017 ◽  
Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Wataru Mizukami ◽  
Kosuke Mitarai ◽  
Yuya O. Nakagawa ◽  
Takahiro Yamamoto ◽  
Tennin Yan ◽  
...  

2021 ◽  
Vol 154 (23) ◽  
pp. 234103
Author(s):  
Andreas Irmler ◽  
Alejandro Gallo ◽  
Andreas Grüneis

Sign in / Sign up

Export Citation Format

Share Document