state wave
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 39)

H-INDEX

34
(FIVE YEARS 3)

Atoms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Evgeny Z. Liverts ◽  
Nir Barnea

In the framework of the study of helium-like atomic systems possessing the collinear configuration, we propose a simple method for computing compact but very accurate wave functions describing the relevant S-state. It is worth noting that the considered states include the well-known states of the electron–nucleus and electron–electron coalescences as a particular case. The simplicity and compactness imply that the considered wave functions represent linear combinations of a few single exponentials. We have calculated such model wave functions for the ground state of helium and the two-electron ions with nucleus charge 1≤Z≤5. The parameters and the accompanying characteristics of these functions are presented in tables for number of exponential from 3 to 6. The accuracy of the resulting wave functions are confirmed graphically. The specific properties of the relevant codes by Wolfram Mathematica are discussed. An example of application of the compact wave functions under consideration is reported.


2021 ◽  
Author(s):  
Leon Freitag ◽  
Alberto Baiardi ◽  
Stefan Knecht ◽  
Leticia González

2021 ◽  
Vol 19 (1) ◽  
pp. 41
Author(s):  
R. I. Mingazov ◽  
R. V. Melnikovov ◽  
F. I. Spiridonov ◽  
K. V. Shishakov

Статья посвящена разработке информационно-сетевого комплекса (ИСК) для сопровождения производственных операций контроля, диагностики и настройки точностных характеристик твердотельных волновых гироскопов с целью повышения качества изделий и эффективности технологических процессов.Для этого сначала проведен анализ существующих информационных систем сопровождения автоматизации технологических процессов и их контроля. Обсуждается возможность использования таких систем в производстве твердотельных волновых гироскопов.В результате предложена структура ИСК, разделяющаяся на физическую и информационную подсистемы. В ней физическая подсистема представляет собой набор коммутирующих устройств в виде стендов с промышленными компьютерами, узлов связи, серверов и персональных компьютеров и других периферийных устройств. А информационная подсистема включает программное обеспечение для автоматизации технологических операций и анализа получаемых данных. Предполагается, что программное обеспечение анализа данных будет также производить запросы к базе данных и обрабатывать большие объемы информации  с использованием алгоритмов машинного обучения.Для повышения эффективности всей системы организуется автоматический сбор физических и точностных параметров изделий на разных этапах их производства. Среди основных планируемых результатов работы ИСК выделены: оптимизация технологических процессов и выявление сложных многофакторных нелинейных зависимостей параметров качества от параметров технологических операций, а также автоматическое оперативное выявление неисправного оборудования с выработкой рекомендаций по его ремонту и автоматический оперативный контроль уровня квалификации операторов с регулировщиками.Отдельно обсуждаются способы интегрирования ИСК в производственный процесс изготовления твердотельного волнового гироскопа.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tamil Arasan Bakthavatchalam ◽  
Suriyadeepan Ramamoorthy ◽  
Malaikannan Sankarasubbu ◽  
Radha Ramaswamy ◽  
Vijayalakshmi Sethuraman

AbstractMachine Learning methods are emerging as faster and efficient alternatives to numerical simulation techniques. The field of Scientific Computing has started adopting these data-driven approaches to faithfully model physical phenomena using scattered, noisy observations from coarse-grained grid-based simulations. In this paper, we investigate data-driven modelling of Bose-Einstein Condensates (BECs). In particular, we use Gaussian Processes (GPs) to model the ground state wave function of BECs as a function of scattering parameters from the dimensionless Gross Pitaveskii Equation (GPE). Experimental results illustrate the ability of GPs to accurately reproduce ground state wave functions using a limited number of data points from simulations. Consistent performance across different configurations of BECs, namely Scalar and Vectorial BECs generated under different potentials, including harmonic, double well and optical lattice potentials pronounces the versatility of our method. Comparison with existing data-driven models indicates that our model achieves similar accuracy with only a small fraction ($$\frac{1}{50}$$ 1 50 th) of data points used by existing methods, in addition to modelling uncertainty from data. When used as a simulator post-training, our model generates ground state wave functions $$36 \times $$ 36 × faster than Trotter Suzuki, a numerical approximation technique that uses Imaginary time evolution. Our method is quite general; with minor changes it can be applied to similar quantum many-body problems.


Sign in / Sign up

Export Citation Format

Share Document