scholarly journals Extended Lagrangian Born–Oppenheimer molecular dynamics using a Krylov subspace approximation

2020 ◽  
Vol 152 (10) ◽  
pp. 104103 ◽  
Author(s):  
Anders M. N. Niklasson
Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4574
Author(s):  
Joshitha Ravishankar ◽  
Mansi Sharma ◽  
Pradeep Gopalakrishnan

To create a realistic 3D perception on glasses-free displays, it is critical to support continuous motion parallax, greater depths of field, and wider fields of view. A new type of Layered or Tensor light field 3D display has attracted greater attention these days. Using only a few light-attenuating pixelized layers (e.g., LCD panels), it supports many views from different viewing directions that can be displayed simultaneously with a high resolution. This paper presents a novel flexible scheme for efficient layer-based representation and lossy compression of light fields on layered displays. The proposed scheme learns stacked multiplicative layers optimized using a convolutional neural network (CNN). The intrinsic redundancy in light field data is efficiently removed by analyzing the hidden low-rank structure of multiplicative layers on a Krylov subspace. Factorization derived from Block Krylov singular value decomposition (BK-SVD) exploits the spatial correlation in layer patterns for multiplicative layers with varying low ranks. Further, encoding with HEVC eliminates inter-frame and intra-frame redundancies in the low-rank approximated representation of layers and improves the compression efficiency. The scheme is flexible to realize multiple bitrates at the decoder by adjusting the ranks of BK-SVD representation and HEVC quantization. Thus, it would complement the generality and flexibility of a data-driven CNN-based method for coding with multiple bitrates within a single training framework for practical display applications. Extensive experiments demonstrate that the proposed coding scheme achieves substantial bitrate savings compared with pseudo-sequence-based light field compression approaches and state-of-the-art JPEG and HEVC coders.


PAMM ◽  
2005 ◽  
Vol 5 (1) ◽  
pp. 797-800 ◽  
Author(s):  
Valeria Simoncini ◽  
Daniel B. Szyld

Sign in / Sign up

Export Citation Format

Share Document