Longitudinal vortex structures in a cylinder wake

1994 ◽  
Vol 6 (9) ◽  
pp. 2883-2885 ◽  
Author(s):  
J. Wu ◽  
J. Sheridan ◽  
M. C. Welsh ◽  
K. Hourigan ◽  
M. Thompson
Author(s):  
Azlin Mohd Azmi ◽  
Yucen Lu ◽  
Tongming Zhou

1974 ◽  
Vol 66 (3) ◽  
pp. 553-576 ◽  
Author(s):  
Owen M. Griffin ◽  
Steven E. Ramberg

The strength (initial circulation) and spacing of vortices in the wake of a circular cylinder have been obtained for conditions under which the body undergoes lateral vibrations. The vibrations of the cylinder were at all times synchronized with those in the wake, thereby suppressing the natural Strouhal frequency in favour of a common synchronized or ‘locked-in’ frequency for the body-wake system. All experiments were performed at a Reynolds number of 144 or 190. An inverse relation between the initial circulation K and the length lF of the vortex formation region was obtained for cylinder oscillations of up to 50% of a diameter, at vibration frequencies both above and below the Strouhal shedding frequency. The initial circulation K of the vortices was increased by as much as 65%, at lF = 1·6 diameters, from the stationary-cylinder value of K corresponding to lF = 3·2d. An increase in the rate A of vorticity generation of 80% from the stationary-cylinder wake value was obtained with the cylinder vibrating at 30% of a diameter and 110% of the Strouhal frequency. Both flow-visualization and hot-wire results show that the lateral spacing of the vortex street decreases as the vibration amplitude of the cylinder is increased, but that the longitudinal vortex spacing is independent of changes in amplitude. The longitudinal spacing, however, varies inversely with the vibration frequency. The street approaches a single line of vortices of alternating sign as the amplitude of vibration approaches values near a full cylinder diameter, and secondary vortex formation at these large amplitudes is associated with the vanishing lateral spacing of the street. Observation of the wake has elucidated the mechanism of vortex formation; the entrainment processes in the formation region have been observed at small intervals over a cycle of the cylinder's motion.


Author(s):  
S. K. Singh ◽  
P. K. Panigrahi

The control of horizontal square cylinder wake using thermal buoyancy has been experimentally investigated at low Reynolds numbers. The cylinder with an aspect ratio of 60 is mounted in a vertical test cell. The cylinder is electrically heated such that the buoyancy aids to the inertia of the mean flow. The operating parameters i.e. Reynolds number (87–118) and Richardson number (0.065–0.171) are varied to examine the flow behaviour over a range of experimental conditions. Laser schlieren-interferometry has been used for visualization and analysis of flow structures. The complete vortex shedding sequence has been recorded using a highspeed camera. The suppression of vortex shedding by heat input has been demonstrated by schlieren image visualization, time traces of light intensity, corresponding power spectra and Strouhal number. The study provides new experimental information on processes and mechanisms involved in the heat-induced changes of the vortex structures under the influence of buoyancy. The formation length of the vortex structures increases with increase in Richardson number i.e. heating level. The sequence of instantaneous schlieren images show that shape of vortex structures becomes slender at a sufficiently high Richardson number and the vortices from opposite shear layers rub with each other without increasing the circulation level and the two shear layers combine to form a single plume. The plume becomes steady at critical value of heat input leading to suppression of vortex shedding. The corresponding spectra evolve from having a clear peak at the vortex shedding frequency to broadband spectra when vortex shedding is suppressed.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Fan Zhang ◽  
Desmond Appiah ◽  
Ke Chen ◽  
Shouqi Yuan ◽  
Kofi Asamoah Adu-Poku ◽  
...  

Abstract To obtain a better insight into the unsteady flow behavior in side channel pumps by a robust vortex identification method, this study presents the efficacy of the new Ω-criterion in characterizing the evolution of vortex structures in the turbulent flows under different time steps. The flow behavior and the underlying vorticity dynamics were revealed as well. Compared to Q-criterion, the new Ω-criterion identified all vortex structures irrespective of the intensity at a universal threshold of 0.52. Three different types of vortex structures (longitudinal, axial, and radial) were identified to be responsible for the turbulent flows in the side channel pumps. The beneficial longitudinal vortex promotes the momentum exchange flow between the impeller and side channel which leads to the high hydraulic head of side channel pumps. On the other hand, the unfavorable axial and radial vortex structures restricted in the impeller passage mitigate the exchange process accounting for the low efficiency of the pumps. From this study, it can be established that the evolution of the axial vortex structures is responsible for the largest vortex distribution in the impeller compared to the total vortex evolved. The impeller outer radius contributes about 60% of the unfavorable axial structures evolved. Using the new Ω-criterion, many reported anomalous findings have been explained.


2020 ◽  
Vol 32 (4) ◽  
pp. 046103 ◽  
Author(s):  
Branden M. Kirchner ◽  
Gregory S. Elliott ◽  
J. Craig Dutton

Author(s):  
Volodymyr Voskoboinick ◽  
Andriy Voskoboinick ◽  
Oleksandr Voskoboinyk ◽  
Volodymyr Turick

1998 ◽  
Author(s):  
Takaaki Shizawa ◽  
Shinji Honami ◽  
Kotaro Miyauchi

Sign in / Sign up

Export Citation Format

Share Document