Blasius boundary layer flow over an irregular leading edge

1997 ◽  
Vol 9 (5) ◽  
pp. 1470-1472 ◽  
Author(s):  
P. D. Weidman
1982 ◽  
Vol 5 (2) ◽  
pp. 377-384 ◽  
Author(s):  
D. B. Ingham ◽  
L. T. Hildyard

The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.


Author(s):  
Stefan Becker ◽  
Donald M. McEligot ◽  
Edmond Walsh ◽  
Eckart Laurien

New results are deduced to assess the validity of proposed transition indicators when applied to situations other than boundary layers on smooth surfaces. The geometry employed utilizes a two-dimensional square rib to disrupt the boundary layer flow. The objective is to determine whether some available criteria are consistent with the present measurements of laminar recovery and transition for the flow downstream of this rib. For the present data — the proposed values of thresholds for transition in existing literature that are based on the freestream turbulence level at the leading edge are not reached in the recovering laminar run but they are not exceeded in the transitioning run either. Of the pointwise proposals examined, values of the suggested quantity were consistent for three of the criteria; that is, they were less than the threshold in laminar recovery and greater than it in the transitioning case.


Author(s):  
Konstantinos Tsigklifis ◽  
Anthony D. Lucey

We develop a model to study the fluid-structure interaction (FSI) of a compliant panel with a Blasius boundary-layer flow. We carry out a two-dimensional global linear stability analysis modeling the flow using a combination of vortex and source boundary-element sheets on a computational grid while the dynamics of a plate-spring compliant wall are represented in finite-difference form. The system is then couched as an eigenvalue problem and the eigenvalues of the various flow- and wall-based instabilities are analyzed for two distinct sets of system parameters. Key findings are that coalescence — or resonance — of a structural eigenmode with either the most unstable flow-based Tollmien-Schlichting Wave (TSW) or wall-based travelling-wave flutter (TWF) modes can occur. This renders the convective nature of these instabilities to become global for a finite compliant wall, a phenomenon that has not hitherto been reported in the literature.


1995 ◽  
Vol 7 (6) ◽  
pp. 1282-1291 ◽  
Author(s):  
Uwe Ehrenstein ◽  
Werner Koch

1969 ◽  
Vol 35 (3) ◽  
pp. 439-450 ◽  
Author(s):  
J. H. Merkin

The boundary-layer flow over a semi-infinite vertical flat plate, heated to a constant temperature in a uniform free stream, is discussed in the two cases when the buoyancy forces aid and oppose the development of the boundary layer. In the former case, two series solutions are obtained, one of which is valid near the leading edge and the other is valid asymptotically. An accurate numerical method is used to describe the flow in the region where the series are not valid. In the latter case, a series, valid near the leading edge is obtained and it is extended by a numerical method to the point where the boundary layer is shown to separate.


Sign in / Sign up

Export Citation Format

Share Document