asymptotic solution
Recently Published Documents


TOTAL DOCUMENTS

1136
(FIVE YEARS 101)

H-INDEX

40
(FIVE YEARS 3)

Author(s):  
B. Eichinger ◽  
P. Yuditskii

AbstractThe standard well-known Remez inequality gives an upper estimate of the values of polynomials on $$[-1,1]$$ [ - 1 , 1 ] if they are bounded by 1 on a subset of $$[-1,1]$$ [ - 1 , 1 ] of fixed Lebesgue measure. The extremal solution is given by the rescaled Chebyshev polynomials for one interval. Andrievskii asked about the maximal value of polynomials at a fixed point, if they are again bounded by 1 on a set of fixed size. We show that the extremal polynomials are either Chebyshev (one interval) or Akhiezer polynomials (two intervals) and prove Totik–Widom bounds for the extremal value, thereby providing a complete asymptotic solution to the Andrievskii problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yu Jia ◽  
Liyun Su ◽  
Yong He ◽  
Qi Huang

The optimal investment problem is a hot field of financial risk control. The analytical solution of investment strategy can be obtained with the power function utility and exponential function utility when the stock price obeys the constant elasticity of variance (CEV) model. However, different investors have different risk preferences; it means that different investors have different utility functions. In this paper, we propose an asymptotic analysis method to obtain the asymptotic solution of investment strategy with the general utility function. The value function is expanded in the form of series, the expressions of the zero-order term and first-order term of the series expansion are derived, respectively, and the error between the asymptotic approximation and the optimal value function is calculated. Finally, the numerical examples provide comparative analysis between the analytical solution and the asymptotic solution to verify the effectiveness of the proposed method.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012007
Author(s):  
Liping Bao ◽  
Xin Shuai ◽  
Liqun Wu

Abstract Based on the basic equation of Green Lindsay (G-L) theory, the thermoelastic weak coupling problem under the basic equation is discussed, that is, two thermal relaxation parameters are added to the constitutive equation, the influence of the coupling term on the temperature field and elastic field is considered, and the asymptotic solution of the governing equation is constructed. Firstly, in order to obtain the asymptotic solution, the singularly perturbed expansion method is used.Then,combined with the corresponding boundary conditions, the partial differential equation method is used to solve the external solution and the boundary layer correction term. Secondly, in the case of weak coupling, the uniformly efficient estimation of the remainder of the asymptotic solution is obtained by using Gronwall inequality, so as to obtain the uniformly efficient of the formal asymptotic solution. Finally, the first term of the asymptotic solution is numerically analyzed by using the singularly perturbed numerical method. The present work will be conducive to the analysis of thermoelastic processes and numerical simulation of different materials in the case of weak coupling.


2021 ◽  
Vol 929 ◽  
Author(s):  
Y. Ueda ◽  
T. Kida

The initial flow past an impulsively started translating circular cylinder is asymptotically analysed using a Brinkman penalization method on the Navier–Stokes equations. The asymptotic solution obtained shows that the tangential and normal slip velocities on the cylinder surface are of the order of $1/\sqrt {\lambda }$ and $1/\lambda$ , respectively, within the second approximation of the present asymptotic analysis, where $\lambda$ is the penalization parameter. This result agrees with the estimation of Carbou & Fabrie (Adv. Diff. Equ., vol. 8, 2003, pp. 1453–1480). Based on the asymptotic solution, the influence of the penalization parameter $\lambda$ is discussed on the drag coefficient that is calculated using the adopted three formulae. It can then be found that the drag coefficient calculated from the integration of the penalization term exhibits a half-value of the results of Bar-Lev & Yang (J. Fluid Mech., vol. 72, 1975, pp. 625–647) as $\lambda \to \infty$ .


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. M. Yang ◽  
M. W. Chen ◽  
G. J. Zheng ◽  
Z. D. Wang

AbstractThe effect of surface energy on the melting of micro/nanoparticles is studied using the asymptotic method. The asymptotic solution of the dynamic model for micro/nanoparticle melting reveals the dependence of the particle melting temperature on the particle size and the anisotropy of surface energy. Specifically, as the particle radius decreases, the isotropic surface energy reduces the melting temperature and accelerates the interface melting of the particle. Along certain crystal orientations, the anisotropy of surface energy enhances the melting temperature of the micro/nanoparticles, whereas depresses the melting temperature of the micro/nanoparticle along other crystal orientations. The anisotropy of surface energy enhances the melting speed of the micro/nanoparticles along certain crystal orientations, whereas reduces the melting speed of the micro/nanoparticles along other crystal orientations. The result of the asymptotic solution is in good agreement with the experimental data.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1940
Author(s):  
Michael J. Tomas Tomas III ◽  
Jun Yu

We present an asymptotic solution for call options on zero-coupon bonds, assuming a stochastic process for the price of the bond, rather than for interest rates in general. The stochastic process for the bond price incorporates dampening of the price return volatility based on the maturity of the bond. We derive the PDE in a similar way to Black and Scholes. Using a perturbation approach, we derive an asymptotic solution for the value of a call option. The result is interesting, as the leading order terms are equivalent to the Black–Scholes model and the additional next order terms provide an adjustment to Black–Scholes that results from the stochastic process for the price of the bond. In addition, based on the asymptotic solution, we derive delta, gamma, vega and theta solutions. We present some comparison values for the solution and the Greeks.


2021 ◽  
Vol 18 (2) ◽  
pp. 226-242
Author(s):  
Valerii Samoilenko ◽  
Yuliia Samoilenko

The paper deals with constructing an asymptotic one-phase soliton-like solution to the Benjamin--Bona--Mahony equation with variable coefficients and a strong singularity making use of the non-linear WKB technique. The influence of the small-parameter value on the structure and the qualitative properties of the asymptotic solution, as well as the accuracy with which the solution satisfies the considerable equation, have been analyzed. It was demonstrated that due to the strong singularity, it is possible to write explicitly not only the main term of the asymptotics but at least its first-order term.


Sign in / Sign up

Export Citation Format

Share Document