turbulence level
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 21)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 931 ◽  
Author(s):  
Kan He ◽  
Guglielmo Minelli ◽  
Xinchao Su ◽  
Guangjun Gao ◽  
Siniša Krajnović

The wake of a notchback Ahmed body presenting a bi-stable nature is investigated by performing wind tunnel experiments and large-eddy simulations. Attention is confined to the Reynolds number ( $Re$ ) influence on the wake state instability within $5\times 10^{4}\leq Re \leq 25\times 10^{4}$ . Experimental observations suggest a wake bi-stability with low-frequency switches under low $Re$ . The wake becomes ‘tri-stable’ with the increase of $Re$ with the introduction of a new symmetric state. The higher presence of the symmetric state can be considered as a symmetrization of the wake bi-stability with an increasing $Re$ . The wake symmetry under high $Re$ attributed to the highly frequent switches of the wake is extremely sensitive to small yaw angles, showing the feature of bi-stable flows. The wake asymmetry is confirmed in numerical simulations with both low and high $Re$ . The wake asymmetries are indicated by the wake separation, the reattachment and the wake dynamics identified by the proper orthogonal decomposition. However, the turbulence level is found to be significantly higher with a higher $Re$ . This leads to a higher possibility to break the asymmetric state, resulting in highly frequent switches showing symmetry.


2021 ◽  
Vol 12 (1) ◽  
pp. 378-388
Author(s):  
Augustinus Nicolaas Hillebrandes Oroh

Most industry players are dubious whether current digital technology is strongly affecting the long traditional demand and supply economy while scholars believe that companies need to have valuable and unique resources, excellent and agile capabilities, and the capacity of aligning their core competencies to lead the industry and therefore sustaining its competitive advantage. Companies are fighting with the aggressive movements by their competitors in the changing markets and facing very dynamic full of surprises environmental turbulence. We reveal the Environment Serving Organization concept helps companies to be well prepared in advance and applicable at all turbulence levels when the overall economy is at high uncertainty. By exploring diversification based on Ansoff Growth Matrix and using the regression and mediation models, this is one of the first papers that investigates the Environmental Turbulence level as a probable mediator in the intense relationship between diversification strategy and strong firm performance.


2021 ◽  
pp. 100111
Author(s):  
Eirik H. Herø ◽  
Nicolas La Forgia ◽  
Jannike Solsvik ◽  
Hugo A. Jakobsen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isabella Schalko ◽  
Ellen Wohl ◽  
Heidi M. Nepf

AbstractWood is an integral part of a river ecosystem and the number of restoration projects using log placements is increasing. Physical model tests were used to explore how the wood position and submergence level (discharge) affect wake structure, and hence the resulting habitat. We observed a von-Kármán vortex street (VS) for emergent logs placed at the channel center, while no VS formed for submerged logs, because the flow entering the wake from above the log (sweeping flow) inhibited VS formation. As a result, emergent logs placed at the channel center resulted in ten times higher turbulent kinetic energy compared to submerged logs. In addition, both spatial variation in time-mean velocity and turbulence level increased with increasing log length and decreasing submergence level. Submerged logs and logs placed at the channel side created a greater velocity deficit and a longer recirculation zone, both of which can increase the residence time in the wake and deposition of organic matter and nutrients. The results demonstrate that variation in log size and degree of submergence can be used as a tool to vary habitat suitability for different fish preferences. To maximize habitat diversity in rivers, we suggest a diverse large wood placement.


2021 ◽  
pp. 1-15
Author(s):  
Kristina Ðurovic ◽  
Luca De Vincentiis ◽  
daniele simoni ◽  
Davide Lengani ◽  
Jan O. Pralits ◽  
...  

Abstract The aerodynamic efficiency of turbomachinery blades is profoundly affected by the occurrence of laminar-turbulent transition in the boundary layer since skin friction and losses rise for the turbulent state. Depending on the free-stream turbulence level, we can identify different paths towards a turbulent state. The present study uses direct numerical simulation as the primary tool to investigate the flow behaviour of the low-pressure turbine blade. The computational set-up was designed to follow the experiments by Lengani & Simoni (2015). In the simulations, the flow past one blade is computed, with periodic boundary conditions in the cross-flow directions to account for the cascade. Isotropic homogeneous free-stream turbulence is prescribed at the inlet as a superposition of Fourier modes with a random phase shift. Two levels of the free-stream turbulence intensity were simulated (Tu=0.19% and 5.2%), with the integral length scale being 0.167c, at the leading edge. We observed that in case of low free-stream turbulence on the suction side, the Kelvin–Helmholz instability dominated the transition process and full-span vortices were shed from the separation bubble. Transition on the suction side proceeded more rapidly in the high-turbulence case, where streaks broke down into turbulent spots and caused bypass transition. On the pressure side, we have identified the appearance of longitudinal vortical structures, where increasing the turbulence level gives rise to more longitudinal structures. We note that these vortical structures are not produced by Gortler instability.


Author(s):  
Slawomir Kubacki ◽  
Daniele Simoni ◽  
Davide Lengani ◽  
Erik Dick

An algebraic intermittency model for boundary layer flow transition from laminar to turbulent state, is extended using an experimental data base on boundary layer flows with various transition types and results by large eddy simulation of transition in a separated boundary layer. The originating algebraic transition model functions well for bypass transition in an attached boundary layer under a moderately high or elevated free-stream turbulence level, and for transition by Kelvin–Helmholtz instability in a separated boundary layer under a low free-stream turbulence level. It also functions well for transition in a separated layer, caused by a very strong adverse pressure gradient under a moderately high or elevated free-stream turbulence level. It is not accurate for transition in a separated layer under a moderately strong adverse pressure gradient, in the presence of a moderately high or elevated free-stream turbulence level. The extension repairs this deficiency. Therefore, a sensor function for detection of the front part of a separated boundary layer activates two terms that express the effect of free-stream turbulence on the breakdown of a separated layer, without changing the functioning of the model in other flow regions. The sensor and the breakdown terms use only local variables.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yufeng Du ◽  
Long Wu ◽  
Xunnian Wang ◽  
Jun Lin ◽  
Neng Xiong

Hyperbola fitting of test data is an extremely important process in turbulence level measurement test in wind tunnels. The solution of the overdetermined equations (SOE) method is often used to solve hyperbola fitting parameters to obtain turbulence level. However, due to unsteady flow characteristics, the SOE method often results in overfitting phenomena, which makes it impossible to solve turbulence level accurately. This paper proposes using the constrained least-squares (CLS) method to convert the problem of hyperbola fitting of test data into the inequality constrained optimization problem and then using the Lagrange programming neural network (LPNN) method to solve turbulence level iteratively. The stability of the LPNN method is analysed, and three sets of typical turbulence level measurement test data are processed using the LPNN method. The results verify the feasibility of applying the LPNN method to iteratively solve the turbulence level of wind tunnels.


2020 ◽  
Vol 10 (20) ◽  
pp. 7258 ◽  
Author(s):  
Junwei Yang ◽  
Hua Yang ◽  
Weijun Zhu ◽  
Nailu Li ◽  
Yiping Yuan

The objective of the current work is to experimentally investigate the effect of turbulent flow on an airfoil with a Gurney flap. The wind tunnel experiments were performed for the DTU-LN221 airfoil under different turbulence level (T.I. of 0.2%, 10.5% and 19.0%) and various flap configurations. The height of the Gurney flaps varies from 1% to 2% of the chord length; the thickness of the Gurney flaps varies from 0.25% to 0.75% of the chord length. The Gurney flap was vertical fixed on the pressure side of the airfoil at nearly 100% measured from the leading edge. By replacing the turbulence grille in the wind tunnel, measured data indicated a stall delay phenomenon while increasing the inflow turbulence level. By further changing the height and the thickness of the Gurney flap, it was found that the height of the Gurney flap is a very important parameter whereas the thickness parameter has little influence. Besides, velocity in the near wake zone was measured by hot-wire anemometry, showing the mechanisms of lift enhancement. The results demonstrate that under low turbulent inflow condition, the maximum lift coefficient of the airfoil with flaps increased by 8.47% to 13.50% (i.e., thickness of 0.75%), and the Gurney flap became less effective after stall angle. The Gurney flap with different heights increased the lift-to-drag ratio from 2.74% to 14.35% under 10.5% of turbulence intensity (i.e., thickness of 0.75%). However, under much a larger turbulence environment (19.0%), the benefit to the aerodynamic performance was negligible.


Author(s):  
Kristina Ðurović ◽  
Luca De Vincentiis ◽  
Daniele Simoni ◽  
Davide Lengani ◽  
Jan Pralits ◽  
...  

Abstract The aerodynamic efficiency of turbomachinery blades is profoundly affected by the occurrence of laminar-turbulent transition in the boundary layer since skin friction and losses rise for the turbulent state. Depending on the free-stream turbulence level, we can identify different paths towards a turbulent state. The present study uses direct numerical simulation as the primary tool to investigate the flow behaviour of the low-pressure turbine blade. The computational set-up was designed to follow the experiments by Lengani & Simoni [1]. In the simulations, the flow past only one blade is computed, with periodic boundary conditions in the cross-flow directions to account for the cascade. Isotropic homogeneous free-stream turbulence is prescribed at the inlet. The free-stream turbulence is prescribed as a superposition of Fourier modes with a random phase shift. Two levels of the free-stream turbulence intensity were simulated (Tu = 0.19% and 5.2%), with the integral length scale being 0.167c, at the leading edge. We observed that in case of low free-stream turbulence on the suction side, the Kelvin–Helmholz instability dominated the transition process and full-span vortices were shed from the separation bubble. Transition on the suction side proceeded more rapidly in the high-turbulence case, where streaks broke down into turbulent spots and caused bypass transition. On the pressure side, we have identified the appearance of longitudinal vortical structures, where increasing the turbulence level gives rise to more longitudinal structures. We note that these vortical structures are not produced by Görtler instability.


Sign in / Sign up

Export Citation Format

Share Document