blasius boundary layer
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 8)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 9 (2) ◽  
pp. 35-41
Author(s):  
Manisha Patel ◽  
Hema Surati ◽  
M G Timol

Blasius equation is very well known and it aries in many boundary layer problems of fluid dynamics. In this present article, the Blasius boundary layer is extended by transforming the stress strain term from Newtonian to non-Newtonian. The extension of Blasius boundary layer is discussed using some non-newtonian fluid models like, Power-law model, Sisko model and Prandtl model. The Generalised governing partial differential equations for Blasius boundary layer for all above three models are transformed into the non-linear ordinary differewntial equations using the one parameter deductive group theory technique. The obtained similarity solutions are then solved numerically. The graphical presentation is also explained for the same. It concludes that velocity increases more rapidly when fluid index is moving from shear thickninhg to shear thininhg fluid.MSC 2020 No.: 76A05, 76D10, 76M99


Author(s):  
Bohua Sun

A solution for the Prandtl-Blasius equation is essential to all kinds of boundary layer problems. This paper revisits this classic problem and presents a general Maple code as its numerical solution. The solutions were obtained from the Maple code, using the Runge-Kutta method. The study also considers convergence radius expanding and an approximate analytic solution is proposed by curve fitting. Similarly, the study resolves some boundary layer related problems and provide relevant Maple codes for these.


Author(s):  
Bohua Sun

A solution for the Prandtl-Blasius equation is essential to all kinds of boundary layer problems. This paper revisits this classic problem and presents a general Maple code as its numerical solution. The solutions were obtained from the Maple code, using the Runge-Kutta method. The study also considers convergence radius expanding and an approximate analytic solution is proposed by curve fitting.


2020 ◽  
Vol 73 (1) ◽  
pp. 36-50 ◽  
Author(s):  
E R Belden ◽  
Z A Dickman ◽  
S J Weinstein ◽  
A D Archibee ◽  
E Burroughs ◽  
...  

Summary We demonstrate that the asymptotic approximant applied to the Blasius boundary layer flow over a flat plat (Barlow et al., Q. J. Mech. Appl. Math. 70 (2017) 21–48.) yields accurate analytic closed-form solutions to the Falkner–Skan boundary layer equation for flow over a wedge having angle $\beta\pi/2$ to the horizontal. A wide range of wedge angles satisfying $\beta\in[-0.198837735, 1]$ are considered, and the previously established non-unique solutions for $\beta<0$ having positive and negative shear rates along the wedge are accurately represented. The approximant is used to determine the singularities in the complex plane that prescribe the radius of convergence of the power series solution to the Falkner–Skan equation. An attractive feature of the approximant is that it may be constructed quickly by recursion compared with traditional Padé approximants that require a matrix inversion. The accuracy of the approximant is verified by numerical solutions, and benchmark numerical values are obtained that characterize the asymptotic behavior of the Falkner–Skan solution at large distances from the wedge.


2019 ◽  
Vol 881 ◽  
pp. 164-181 ◽  
Author(s):  
Miguel Beneitez ◽  
Yohann Duguet ◽  
Philipp Schlatter ◽  
Dan S. Henningson

Recent progress in understanding subcritical transition to turbulence is based on the concept of the edge, the manifold separating the basins of attraction of the laminar and the turbulent state. Originally developed in numerical studies of parallel shear flows with a linearly stable base flow, this concept is adapted here to the case of a spatially developing Blasius boundary layer. Longer time horizons fundamentally change the nature of the problem due to the loss of stability of the base flow due to Tollmien–Schlichting (TS) waves. We demonstrate, using a moving box technique, that efficient long-time tracking of edge trajectories is possible for the parameter range relevant to bypass transition, even if the asymptotic state itself remains out of reach. The flow along the edge trajectory features streak switching observed for the first time in the Blasius boundary layer. At long enough times, TS waves co-exist with the coherent structure characteristic of edge trajectories. In this situation we suggest a reinterpretation of the edge as a manifold dividing the state space between the two main types of boundary layer transition, i.e. bypass transition and classical transition.


2019 ◽  
Vol 871 ◽  
pp. 717-741 ◽  
Author(s):  
Mattias Brynjell-Rahkola ◽  
Ardeshir Hanifi ◽  
Dan S. Henningson

In this study the origins of premature transition due to oversuction in boundary layers are studied. An infinite row of circular suction pipes that are mounted at right angles to a flat plate subject to a Blasius boundary layer is considered. The interaction between the flow originating from neighbouring holes is weak and for the parameters investigated, the pipe is always found to be unsteady regardless of the state of the flow in the boundary layer. A stability analysis reveals that the appearance of boundary layer transition can be associated with a linear instability in the form of two unstable eigenmodes inside the pipe that have weak tails, which extend into the boundary layer. Through an energy budget and a structural sensitivity analysis, the origin of this flow instability is traced to the structures developing inside the pipe near the pipe junction. Although the amplitudes of the modes in the boundary layer are orders of magnitude smaller than the corresponding amplitudes inside the pipe, a Koopman analysis of the data gathered from a nonlinear direct numerical simulation confirms that it is precisely these disturbances that are responsible for transition to turbulence in the boundary layer due to oversuction.


Sign in / Sign up

Export Citation Format

Share Document