scholarly journals Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain

1995 ◽  
Vol 2 (11) ◽  
pp. 3933-4024 ◽  
Author(s):  
John Lindl
2020 ◽  
Vol 36 ◽  
pp. 100749 ◽  
Author(s):  
R.E. Olson ◽  
R.J. Leeper ◽  
S.H. Batha ◽  
R.R. Peterson ◽  
P.A. Bradley ◽  
...  

2019 ◽  
Vol 4 (4) ◽  
pp. 046201 ◽  
Author(s):  
Zhenghong Li ◽  
Zhen Wang ◽  
Rongkun Xu ◽  
Jianlun Yang ◽  
Fan Ye ◽  
...  

2002 ◽  
Vol 88 (23) ◽  
Author(s):  
J. P. Chittenden ◽  
M. Dunne ◽  
M. Zepf ◽  
S. V. Lebedev ◽  
A. Ciardi ◽  
...  

2015 ◽  
Vol 22 (5) ◽  
pp. 052702 ◽  
Author(s):  
K. L. Baker ◽  
H. F. Robey ◽  
J. L. Milovich ◽  
O. S. Jones ◽  
V. A. Smalyuk ◽  
...  

2010 ◽  
Vol 52 (12) ◽  
pp. 124027 ◽  
Author(s):  
C K Li ◽  
F H Séguin ◽  
J A Frenje ◽  
M Rosenberg ◽  
A B Zylstra ◽  
...  

2018 ◽  
Vol 48 (6) ◽  
pp. 065203 ◽  
Author(s):  
Dong YANG ◽  
ZhiChao LI ◽  
SanWei LI ◽  
Liang HAO ◽  
Xin LI ◽  
...  

1997 ◽  
Vol 15 (3) ◽  
pp. 461-470 ◽  
Author(s):  
R.E. Olson ◽  
J.J. Macfarlane

Light ion beam inertial confinement fusion (ICF) is a concept in which intense beams of low atomic number ions would be used to drive ICF targets to ignition and gain. Here, results from numerical simulations are presented describing the operation of an indirect-drive light-ion ICF target designed for a commercial power plant application. The simulations indicate that the ICF target, consisting of an X-ray-driven capsule embedded in a spherical foam-filled hohlraum, will produce a fusion energy output of over 500 MJ when driven with lithium ion beams containing a total input energy of 8 MJ.


Sign in / Sign up

Export Citation Format

Share Document