The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion

2017 ◽  
Vol 24 (6) ◽  
pp. 062708 ◽  
Author(s):  
L. J. Perkins ◽  
D. D.-M Ho ◽  
B. G. Logan ◽  
G. B. Zimmerman ◽  
M. A. Rhodes ◽  
...  
1997 ◽  
Vol 15 (3) ◽  
pp. 461-470 ◽  
Author(s):  
R.E. Olson ◽  
J.J. Macfarlane

Light ion beam inertial confinement fusion (ICF) is a concept in which intense beams of low atomic number ions would be used to drive ICF targets to ignition and gain. Here, results from numerical simulations are presented describing the operation of an indirect-drive light-ion ICF target designed for a commercial power plant application. The simulations indicate that the ICF target, consisting of an X-ray-driven capsule embedded in a spherical foam-filled hohlraum, will produce a fusion energy output of over 500 MJ when driven with lithium ion beams containing a total input energy of 8 MJ.


2020 ◽  
Vol 36 ◽  
pp. 100749 ◽  
Author(s):  
R.E. Olson ◽  
R.J. Leeper ◽  
S.H. Batha ◽  
R.R. Peterson ◽  
P.A. Bradley ◽  
...  

2019 ◽  
Vol 4 (4) ◽  
pp. 046201 ◽  
Author(s):  
Zhenghong Li ◽  
Zhen Wang ◽  
Rongkun Xu ◽  
Jianlun Yang ◽  
Fan Ye ◽  
...  

Author(s):  
P. A. Norreys ◽  
C. Ridgers ◽  
K. Lancaster ◽  
M. Koepke ◽  
G. Tynan

A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition etc.; and (c) developing technologies that will be required in the future for a fusion reactor. The Hooke discussion meeting in March 2020 provided an opportunity to reflect on the progress made in inertial confinement fusion research world-wide to date. This first edition of two special issues seeks to identify paths forward to achieve high fusion energy gain. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 1)’.


Author(s):  
Daniel Clery

The use of thermonuclear fusion as a source for energy generation has been a goal of plasma physics for more than six decades. Its advantages are many: easy access to fuel and virtually unlimited supply; no production of greenhouse gases; and little radioactive waste produced. But heating fuel to the high temperature necessary for fusion—at least 100 million degrees Celsius—and containing it at that level has proved to be a difficult challenge. The ring-shaped magnetic confinement of tokamaks, which emerged in the 1960s, was quickly identified as the most promising approach and remains so today although a practical commercial reactor remains decades away. While tokamaks have rightly won most fusion research funding, other approaches have also been pursued at a lower level. Some, such as inertial confinement fusion, have emerged from nuclear weapons programs and others from academic efforts. A few have been spun out into start-up companies funded by venture capital and wealthy individuals. Although alternative approaches are less well studied, their proponents argue that they could provide a smaller, cheaper, and faster route to fusion energy production. This article will survey some of the current efforts and where they stand. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.


2006 ◽  
Vol 24 (3) ◽  
pp. 359-369 ◽  
Author(s):  
TETSUO SOMEYA ◽  
KENTAROU MIYAZAWA ◽  
TAKASHI KIKUCHI ◽  
SHIGEO KAWATA

In order to realize an effective implosion, the beam illumination non-uniformity and implosion non-uniformity must be suppressed to less than a few percent. In this paper, a direct-indirect mixture implosion mode is proposed and discussed in heavy ion beam (HIB) inertial confinement fusion (HIF) in order to release sufficient fusion energy in a robust manner. On the other hand, the HIB illumination non-uniformity depends strongly on a target displacement (dz) in a reactor. In a direct-driven implosion mode dz of ∼20 μm was tolerance and in an indirect-implosion mode dz of ∼100 μm was allowable. In the direct-indirect mixture mode target, a low-density foam layer is inserted, and radiation is confined in the foam layer. In the foam layer the radiation transport is expected in the lateral direction for the HIB illumination non-uniformity smoothing. Two-dimensional implosion simulations are performed and show that the HIB illumination non-uniformity is well smoothed. The simulation results present that a large pellet displacement of ∼300 μm is tolerable in order to obtain sufficient fusion energy in HIF.


2002 ◽  
Vol 88 (23) ◽  
Author(s):  
J. P. Chittenden ◽  
M. Dunne ◽  
M. Zepf ◽  
S. V. Lebedev ◽  
A. Ciardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document