Decoding complex state space trajectories for neural computing

2021 ◽  
Vol 31 (12) ◽  
pp. 123105
Author(s):  
Fabio Schittler Neves ◽  
Marc Timme
2010 ◽  
Vol 08 (03) ◽  
pp. 505-515 ◽  
Author(s):  
A. P. MAJTEY ◽  
A. BORRAS ◽  
A. R. PLASTINO ◽  
M. CASAS ◽  
A. PLASTINO

In a recent work (Borras et al., Phys. Rev. A79 (2009) 022108), we have determined, for various decoherence channels, four-qubit initial states exhibiting the most robust possible entanglement. Here, we explore some geometrical features of the trajectories in state space generated by the decoherence process, connecting the initially robust pure state with the completely decohered mixed state obtained at the end of the evolution. We characterize these trajectories by recourse to the distance between the concomitant time-dependent mixed state and different reference states.


Sign in / Sign up

Export Citation Format

Share Document