initial states
Recently Published Documents


TOTAL DOCUMENTS

574
(FIVE YEARS 145)

H-INDEX

35
(FIVE YEARS 7)

2022 ◽  
Author(s):  
C. Seida ◽  
A. El Allati ◽  
N. Metwally ◽  
Y. Hassouni

Abstract In this suggested version of the bidirectional teleportation protocol, it is assumed that the used quantum channel passes through an amplitude damping channel. Therefore, some of its quantum correlations (entanglement) are lost and, consequently, its efficiency to implement this protocol decreases. The weak and the reversal measurements are used to recover the losses of these correlations, where the negativity, as a measure of entanglement is improved. In this context, we discussed the effect of the noisy strength on the fidelities of the bidirectional teleported states between the users. It is shown that, by applying the weak and the reversal measurements (WRM) on the initial quantum channel between the users, the fidelities of the teleported states are improved. Moreover, we showed that, the upper bounds of the teleported states depend on the initial states of the triggers and the strengths of WRM. It is worth noting that the WRM improves the quantum correlations of the shared channel and, hence, the fidelity of the teleported state if the initial fidelity of the teleported state is larger than 0.5


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Giacomo De Palma ◽  
Lucas Hackl

We prove that the entanglement entropy of any pure initial state of a bipartite bosonic quantum system grows linearly in time with respect to the dynamics induced by any unstable quadratic Hamiltonian. The growth rate does not depend on the initial state and is equal to the sum of certain Lyapunov exponents of the corresponding classical dynamics. This paper generalizes the findings of [Bianchi et al., JHEP 2018, 25 (2018)], which proves the same result in the special case of Gaussian initial states. Our proof is based on a recent generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum systems [De Palma et al., arXiv:2105.05627]. This technique allows us to extend our result to generic mixed initial states, with the squashed entanglement providing the right generalization of the entanglement entropy. We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems, including certain quantum field theory models.


2022 ◽  
Author(s):  
Fereshte Shahbeigi ◽  
Mahsa Karimi ◽  
Vahid Karimipour

Abstract Two qubit density matrices which are of X-shape, are a natural generalization of Bell Diagonal States (BDSs) recently simulated on the IBM quantum device. We generalize the previous results and propose a quantum circuit for simulation of a general two qubit X-state, implement it on the same quantum device, and study its entanglement for several values of the extended parameter space. We also show that their X-shape is approximately robust against noisy quantum gates. To further physically motivate this study, we invoke the two-spin Heisenberg XYZ system and show that for a wide class of initial states, it leads to dynamical density matrices which are X-states. Due to the symmetries of this Hamiltonian, we show that by only two qubits, one can simulate the dynamics of this system on the IBM quantum computer.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Katja Klobas ◽  
Bruno Bertini

We study the entanglement dynamics generated by quantum quenches in the quantum cellular automaton Rule 54. We consider the evolution from a recently introduced class of solvable initial states. States in this class relax (locally) to a one-parameter family of Gibbs states and the thermalisation dynamics of local observables can be characterised exactly by means of an evolution in space. Here we show that the latter approach also gives access to the entanglement dynamics and derive exact formulas describing the asymptotic linear growth of all Rényi entropies in the thermodynamic limit and their eventual saturation for finite subsystems. While in the case of von Neumann entropy we recover exactly the predictions of the quasiparticle picture, we find no physically meaningful quasiparticle description for other Rényi entropies. Our results apply to both homogeneous and inhomogeneous quenches.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Run-Hong He ◽  
Rui Wang ◽  
Shen-Shuang Nie ◽  
Jing Wu ◽  
Jia-Hui Zhang ◽  
...  

AbstractAccurate and efficient preparation of quantum state is a core issue in building a quantum computer. In this paper, we investigate how to prepare a certain single- or two-qubit target state from arbitrary initial states in semiconductor double quantum dots with only a few discrete control pulses by leveraging the deep reinforcement learning. Our method is based on the training of the network over numerous preparing tasks. The results show that once the network is well trained, it works for any initial states in the continuous Hilbert space. Thus repeated training for new preparation tasks is avoided. Our scheme outperforms the traditional optimization approaches based on gradient with both the higher efficiency and the preparation quality in discrete control space. Moreover, we find that the control trajectories designed by our scheme are robust against stochastic fluctuations within certain thresholds, such as the charge and nuclear noises.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Luca Buonocore ◽  
Paolo Nason ◽  
Francesco Tramontano ◽  
Giulia Zanderighi

Abstract We study a few basic photon- and lepton-initiated processes at the LHC which can be computed using the recently developed photon and lepton parton densities. First, we consider the production of a massive scalar particle initiated by lepton-antilepton annihilation and photon-photon fusion as representative examples of searches of exotic particles. Then we study lepton-lepton scattering, since this Standard-Model process may be observable at the LHC. We examine these processes at leading and next-to-leading order and, using the POWHEG method, we match our calculations to parton shower programs that implement the required lepton or photon initial-states. We assess the typical size of cross-sections and their uncertainties and discuss the preferred choices for the factorization scale. These processes can also be computed starting directly from the lepto-production hadronic tensor, leading to a result where some collinear-enhanced QED corrections are missing, but all strong corrections are included. Thus, we are in the unique position to perform a comparison of results obtained via the factorization approach to a calculation that does not have strong corrections. This is particularly relevant in the case of lepton-scattering, that is more abundant at lower energies where it is affected by larger strong corrections. We thus compute this process also with the hadronic-tensor method, and compare the results with those obtained with POWHEG. Finally, for some lepton-lepton scattering processes, we compare the size of the signal to the main quark-induced background, which is double Drell-Yan production, and outline a preliminary search strategy to enhance the signal to background ratio.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Zhen-Ni Xu ◽  
Zhu-Fang Cui ◽  
Craig D. Roberts ◽  
Chang Xu

AbstractA symmetry-preserving regularisation of a vector $$\times $$ × vector contact interaction (SCI) is used to deliver a unified treatment of semileptonic transitions involving $$\pi $$ π , K, $$D_{(s)}$$ D ( s ) , $$B_{(s,c)}$$ B ( s , c ) initial states. The framework is characterised by algebraic simplicity, few parameters, and the ability to simultaneously treat systems from Nambu–Goldstone modes to heavy+heavy mesons. Although the SCI form factors are typically somewhat stiff, the results are comparable with experiment and rigorous theory results. Hence, predictions for the five unmeasured $$B_{s,c}$$ B s , c branching fractions should be a reasonable guide. The analysis provides insights into the effects of Higgs boson couplings via current-quark masses on the transition form factors; and results on $$B_{(s)}\rightarrow D_{(s)}$$ B ( s ) → D ( s ) transitions yield a prediction for the Isgur–Wise function in fair agreement with contemporary data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rabie I. Mohamed ◽  
Manal G. Eldin ◽  
Ahmed Farouk ◽  
A. A. Ramadan ◽  
M. Abdel-Aty

AbstractThe present research is designed to examine the dynamic of the quantum computational speed in a nanowire system through the orthogonality speed when three distinct types of magnetic fields are applied: the strong magnetic field, the weak magnetic field, and no magnetic field. Moreover, we investigate the action of the magnetic fields, the spin-orbit coupling, and the system’s initial states on the orthogonality speed. The observed results reveal that a substantial correlation between the intensity of the spin-orbit coupling and the dynamics of the orthogonality speed, where the orthogonality speed decreasing as the spin-orbit coupling increases. Furthermore, the initial states of the nanowire system are critical for regulating the speed of transmuting the information and computations.


Author(s):  
Dongxu Ouyang ◽  
Jingwen Weng ◽  
Mingyi Chen ◽  
Jian Wang

Abstract The present work carries out a series of thermal runaway experiments to explore the impact of charging and charging rate on the thermal runaway behaviors of lithium-ion cells, in which five charging rates (0C, 0.5C, 1C, 2C and 4C) and three initial states of charge (SOC), i.e. 25%, 50% and 75% are included. The thermal runaway process of 18650 lithium-ion cells induced by over-heating usually consists of seven stages, and is accompanied with high-temperature, fire and toxicity risks. The internal morphology of cells and the micro features of cell materials are seriously damaged after thermal runaway. Charging aggravates the thermal runaway behavior of cells, which is further exhibited as the earlier occurrence of safety vent opening, gas releasing and thermal runaway. Moreover, the severity deteriorates as the charging rate increases (the larger the charging rate, the earlier and more severe the thermal runway), which may be ascribed to the growth of cell SOC and the decline of cell stability under charging. This phenomenon is especially apparent for the cell with a high initial SOC where a more dramatic-rising α (the advancement ratio of critical times for thermal runaway due to charging) is observed.


Sign in / Sign up

Export Citation Format

Share Document