Development of unsteady natural convection in a square cavity under large temperature difference

2021 ◽  
Vol 33 (8) ◽  
pp. 084108
Author(s):  
Xin Wen ◽  
Lian-Ping Wang ◽  
Zhaoli Guo
2001 ◽  
Vol 2001.54 (0) ◽  
pp. 75-76
Author(s):  
Nobuyuki FUCHIMOTO ◽  
Kazuyoshi MATSUZAKI ◽  
Kazunori KOURA ◽  
Sinya WAKAMIZU ◽  
Hiroaki KURISIMA ◽  
...  

2020 ◽  
Vol 44 (9) ◽  
pp. 3771-3776
Author(s):  
Zhigang Peng ◽  
Chen Chen ◽  
Qian Feng ◽  
Yong Zheng ◽  
Huan Liu ◽  
...  

We synthesized a retarder, which has excellent thickening performance in the temperature range of 90–150 °C.


2016 ◽  
Vol 847 ◽  
pp. 479-484 ◽  
Author(s):  
Ya Lu ◽  
Ming Li ◽  
Zi Han Guo ◽  
Xiao Yang Guo

In view of the common polymer retarder of AMPS has poor sedimentation stability for slurry in high temperature, and thickening curve for unusual problems, a new terpolymers retarder PSIH which can solve the problem for the large temperature difference was synthesized by free radical aqueous solution copolymerization using styrene sulfonate (SSS), Itaconic acid (IA) and unsaturated hydroxyl ester monomers X . The structure and thermal stability of the copolymer was characterized with gel permeation chromatography (GPC), infrared spectroscopy (IR), and thermal gravimetric analysis (TG). The application performance of the retarder was assessed. The results demonstrated as follows. 1) The preferred synthesis conditions of the retarder is: the mass ratio of SSS/IA/X=9: 3: 1, temperature=60°C, initiator concentration =2%, the reaction time=5h, pH value was controlled in the neutral bias acidity. 2) Synthetic copolymer is the target product with appropriate molecular weight and has good thermal stability with thermal decomposition temperature of the main chain up to 375°C. 3) Compared with ordinary retarder the PSIH has merits as follows: excellent thermal resistant ability and sedimentation stability in high temperature; the rapid development of compressive strength in low temperature, and a big temperature span (30 °C~150 °C). The thickening time of the slurry with 1.0% PSIH is 245 min at 150°C; the compressive strength of cement with the same dosage can get up to 4.7MPa at 30 °C. In short, PSIH has excellent ability to cope with large temperature difference, providing a strong technical support for complex deep well cementing.


Author(s):  
C. B. Baxi

Due to problems with the availability and the price of water, and the concerns relating to adverse environmental effects of wet cooling systems, the need for water conserving cooling systems has been increasing. Presently, dry cooling accounts for over 30,000 MWe of capacity in more than 30 countries. GT-MHR is specially suited for use of dry cooling due to 1) high efficiency, 2) high heat rejection temperatures and 3) large temperature difference between the turbine inlet and heat rejection temperatures. Higher efficiency means the amount of energy rejected to the cooling per MWe is less. The majority of heat is rejected in precooler and intercooler at helium temperature of more than 100 °C. This results in higher temperature difference for heat rejection. Also due to large temperature difference between the turbine inlet and heat rejection temperatures, changes in ambient temperature have a smaller effect on overall thermal efficiency. Preliminary evaluation shows that pure dry cooling is economical for GT-MHR for water cost of more than 0.8$/m3 and power cost of 3.5 c/kWh. A combination of dry and wet cooling can reduce large percentage of the water use without affecting the efficiency.


Sign in / Sign up

Export Citation Format

Share Document