scholarly journals Endoscopically assisted in situ lower extremity bypass graft: A preliminary report of a new minimally invasive technique

2001 ◽  
Vol 34 (4) ◽  
pp. 668-672 ◽  
Author(s):  
William D. Suggs ◽  
Luis A. Sanchez ◽  
David Woo ◽  
Evan C. Lipsitz ◽  
Takao Ohki ◽  
...  
2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Marcus Fritze ◽  
Sébastien J. Puechmaille ◽  
Jörns Fickel ◽  
Gábor Á. Czirják ◽  
Christian C. Voigt

Author(s):  
Hossein Amirjamshidi ◽  
Jude S. Sauer ◽  
Bryan Barrus ◽  
Peter A. Knight ◽  
Sunil M. Prasad

Objective Bilateral internal thoracic artery (BITA) bypass can enable more complete arterial revascularization procedures. Minimally invasive cardiac surgery (MICS) can offer significant patient benefits. New minimally invasive technology for sternal retraction and tissue manipulation is needed to enable ergonomic and reliable minimally invasive ITA harvesting. The goal of this research was to develop technology and techniques, along with experimental testing and training models, for a sternal-sparing approach to in situ BITA harvesting through a small subxiphoid access site. Methods This study focused on optimizing custom equipment and methods for subxiphoid BITA harvesting initially in a porcine model (19 pig carcasses, 36 ITAs) and subsequently in 7 cadavers (14 ITAs). Results Fifty consecutive ITAs were successfully harvested using this remote access approach. The last 20 ITA specimens harvested from the porcine model were explanted and measured; the average length of the free ITA grafts was 12.8 ± 0.9 cm (range 10.8 to 14.2 cm) with a mean time of 23.3 ± 5.2 minutes (range 13 to 25 minutes) for each harvest. Conclusions Early results demonstrate that both ITAs can be reliably harvested in a skeletonized fashion in situ through sternal-sparing, small subxiphoid access in 2 experimental models. This innovative approach warrants further exploration toward facilitating complete arterial revascularization and the further adoption of minimally invasive coronary artery bypass graft surgery.


2021 ◽  
pp. 155335062098822
Author(s):  
Eirini Giovannopoulou ◽  
Anastasia Prodromidou ◽  
Nikolaos Blontzos ◽  
Christos Iavazzo

Objective. To review the existing studies on single-site robotic myomectomy and test the safety and feasibility of this innovative minimally invasive technique. Data Sources. PubMed, Scopus, Google Scholar (from their inception to October 2019), as well as Clinicaltrials.gov databases up to April 2020. Methods of Study Selection. Clinical trials (prospective or retrospective) that reported the outcomes of single-site robotic myomectomy, with a sample of at least 20 patients were considered eligible for the review. Results. The present review was performed in accordance with the guidelines for Systematic Reviews and Meta-Analyses (PRISMA). Four (4) studies met the inclusion criteria, and a total of 267 patients were included with a mean age from 37.1 to 39.1 years and BMI from 21.6 to 29.4 kg/m2. The mean operative time ranged from 131.4 to 154.2 min, the mean docking time from 5.1 to 5.45 min, and the mean blood loss from 57.9 to 182.62 ml. No intraoperative complications were observed, and a conversion rate of 3.8% was reported by a sole study. The overall postoperative complication rate was estimated at 2.2%, and the mean hospital stay ranged from 0.57 to 4.7 days. No significant differences were detected when single-site robotic myomectomy was compared to the multiport technique concerning operative time, blood loss, and total complication rate. Conclusion. Our findings support the safety of single-site robotic myomectomy and its equivalency with the multiport technique on the most studied outcomes. Further studies are needed to conclude on the optimal minimally invasive technique for myomectomy.


Sign in / Sign up

Export Citation Format

Share Document