Effect of optical field ionisation on the generation of wake fields by femtosecond laser pulses in an inhomogeneous plasma

2020 ◽  
Vol 50 (8) ◽  
pp. 770-775
Author(s):  
I R Umarov ◽  
N E Andreev
2012 ◽  
Vol 19 (10) ◽  
pp. 103104 ◽  
Author(s):  
K. Makito ◽  
A. Zhidkov ◽  
T. Hosokai ◽  
J.-H. Shin ◽  
S. Masuda ◽  
...  

1991 ◽  
Author(s):  
David N. Fittinghoff ◽  
Paul R. Bolton ◽  
Britton Chang ◽  
Linn D. Van Woerkom ◽  
William E. White

2001 ◽  
Author(s):  
C. H. Fan ◽  
J. Sun ◽  
J. P. Longtin

Abstract Optical breakdown by ultrashort laser pulses in dielectrics presents an efficient method to deposit laser energy into materials that otherwise exhibit minimal absorption at low laser intensities. During optical breakdown, a high density of free electrons is formed in the material, which dominates energy absorption, and, in turn, the material removal rate during ultrafast laser-material processing. Classical models assume spatially uniform electron population and constant laser intensity in the focal region, which results in a time-dependent expressions only, i.e., the rate equations, to predict electron evolution induced by nanosecond and picosecond pulses. For femtosecond pulses, however, the small spatial extent of the pulse requires that the pulse propagation be considered, which results in inhomogeneous plasma and localized electron formation during optical breakdown. In this work, a femtosecond breakdown model is combined with the classical rate equations to determine both time- and position-dependent electron density during femtosecond optical breakdown in water. The model exhibits good agreement when compared with experimental results. For other transparent or moderately absorbing dielectric media, the model also shows promise for determining the time- and position-dependent electron evolution induced by ultrashort laser pulses. Another interesting result is that the maximum electron density formed during femtosecond-laser-induced optical breakdown can exceed the conventional limit imposed by the plasma frequency.


2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


Author(s):  
K. H. Leong ◽  
T. Y. Plew ◽  
R. L. Maynard ◽  
A. A. Said ◽  
L. A. Walker

Sign in / Sign up

Export Citation Format

Share Document