Quasiconformal embeddings of Riemannian manifolds and a Picard-type theorem

1998 ◽  
Vol 53 (1) ◽  
pp. 227-228
Author(s):  
V A Zorich
Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1219
Author(s):  
Marek T. Malinowski

In this paper, we consider functional set-valued differential equations in their integral representations that possess integrals symmetrically on both sides of the equations. The solutions have values that are the nonempty compact and convex subsets. The main results contain a Peano type theorem on the existence of the solution and a Picard type theorem on the existence and uniqueness of the solution to such equations. The proofs are based on sequences of approximations that are constructed with appropriate Hukuhara differences of sets. An estimate of the magnitude of the solution’s values is provided as well. We show the closeness of the unique solutions when the equations differ slightly.


1997 ◽  
Vol 08 (03) ◽  
pp. 317-344 ◽  
Author(s):  
Elisha Falbel ◽  
Claudio Gorodski ◽  
Michel Rumin

A sub-Riemannian manifold is a smooth manifold which carries a distribution equipped with a metric. We study the holonomy and the horizontal holonomy (i.e. holonomy spanned by loops everywhere tangent to the distribution) of sub-Riemannian manifolds of contact type relative to an adapted connection. In particular, we obtain an Ambrose–Singer type theorem for the horizontal holonomy and we classify the holonomy irreducible sub-Riemannian symmetric spaces (i.e. homogeneous sub-Riemannian manifolds admitting an involutive isometry whose restriction to the distribution is a central symmetry).


Filomat ◽  
2021 ◽  
Vol 35 (3) ◽  
pp. 955-962
Author(s):  
Liu Yang

Motivated by Eremenko?s accomplisshment of a Picard-type theorem [Period Math Hung. 38 (1999), pp.39-42.], we study the normality of families of holomorphic mappings of several complex variables into PN(C) for moving hypersurfaces located in general position. Our results generalize and complete previous results in this area, especially the works of Dufresnoy, Tu-Li, Tu-Cao, Yang-Fang-Pang and the recent work of Ye-Shi-Pang.


2015 ◽  
Vol 59 (1) ◽  
pp. 247-269 ◽  
Author(s):  
Ruy Tojeiro

AbstractWe introduce polar metrics on a product manifold, which have product and warped product metrics as special cases. We prove a de Rham-type theorem characterizing Riemannian manifolds that can be locally or globally decomposed as a product manifold endowed with a polar metric. For such a product manifold, our main result gives a complete description of all its isometric immersions into a space form whose second fundamental forms are adapted to its product structure in the sense that the tangent spaces to each factor are preserved by all shape operators. This is a far-reaching generalization of a basic decomposition theorem for isometric immersions of Riemannian products due to Moore as well as of its extension by Nölker to isometric immersions of warped products.


2019 ◽  
Vol 19 (3) ◽  
pp. 291-296 ◽  
Author(s):  
Sergey Stepanov ◽  
Irina Tsyganok

Abstract We prove a Liouville-type theorem for two orthogonal complementary totally umbilical distributions on a complete Riemannian manifold with non-positive mixed scalar curvature. This is applied to some special types of complete doubly twisted and warped products of Riemannian manifolds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marek Grochowski

AbstractIn this paper we prove a result which can be regarded as a sub-Riemannian version of de Rham decomposition theorem. More precisely, suppose that (M, H, g) is a contact and oriented sub-Riemannian manifold such that the Reeb vector field $$\xi $$ ξ is an infinitesimal isometry. Under such assumptions there exists a unique metric and torsion-free connection on H. Suppose that there exists a point $$q\in M$$ q ∈ M such that the holonomy group $$\Psi (q)$$ Ψ ( q ) acts reducibly on H(q) yielding a decomposition $$H(q) = H_1(q)\oplus \cdots \oplus H_m(q)$$ H ( q ) = H 1 ( q ) ⊕ ⋯ ⊕ H m ( q ) into $$\Psi (q)$$ Ψ ( q ) -irreducible factors. Using parallel transport we obtain the decomposition $$H = H_1\oplus \cdots \oplus H_m$$ H = H 1 ⊕ ⋯ ⊕ H m of H into sub-distributions $$H_i$$ H i . Unlike the Riemannian case, the distributions $$H_i$$ H i are not integrable, however they induce integrable distributions $$\Delta _i$$ Δ i on $$M/\xi $$ M / ξ , which is locally a smooth manifold. As a result, every point in M has a neighborhood U such that $$T(U/\xi )=\Delta _1\oplus \cdots \oplus \Delta _m$$ T ( U / ξ ) = Δ 1 ⊕ ⋯ ⊕ Δ m , and the latter decomposition of $$T(U/\xi )$$ T ( U / ξ ) induces the decomposition of $$U/\xi $$ U / ξ into the product of Riemannian manifolds. One can restate this as follows: every contact sub-Riemannian manifold whose holonomy group acts reducibly has, at least locally, the structure of a fiber bundle over a product of Riemannian manifolds. We also give a version of the theorem for indefinite metrics.


Sign in / Sign up

Export Citation Format

Share Document