The role of deep seismic reflection data in understanding the architecture and petroleum potential of Australia's onshore sedimentary basins

2010 ◽  
Vol 50 (2) ◽  
pp. 726 ◽  
Author(s):  
Lidena Carr ◽  
Russell Korsch ◽  
Leonie Jones ◽  
Josef Holzschuh

The onshore energy security program, funded by the Australian Government and conducted by Geoscience Australia, has acquired deep seismic reflection data across several frontier sedimentary basins to stimulate petroleum exploration in onshore Australia. Detailed interpretation of deep seismic reflection profiles from four onshore basins, focussing on overall basin geometry and internal sequence stratigraphy, will be presented here, with the aim of assessing the petroleum potential of the basins. At the southern end of the exposed part of the Mt Isa Province, northwest Queensland, a deep seismic line (06GA–M6) crosses the Burke River structural zone of the Georgina Basin. The basin here is >50 km wide, with a half graben geometry, and bounded in the west by a rift border fault. Given the overall architecture, this basin will be of interest for petroleum exploration. The Millungera Basin in northwest Queensland is completely covered by the thin Eromanga Basin and was unknown prior to being detected on two seismic lines (06GA–M4 and 06GA–M5) acquired in 2006. Following this, seismic line 07GA–IG1 imaged a 65 km wide section of the basin. The geometry of internal stratigraphic sequences and a post-depositional thrust margin indicate that the original succession was much thicker than preserved today and may have potential for a petroleum system. The Yathong Trough, in the southeast part of the Darling Basin in NSW, has been imaged in seismic line 08GA–RS2 and interpreted in detail using sequence stratigraphic principles, with several sequences being mapped. Previous studies indicate that the upper part of this basin consists of Devonian sedimentary rocks, with potential source rocks at depth. In eastern South Australia, seismic line 08GA–A1 crossed the Cambrian Arrowie Basin, which is underlain by a Neoproterozoic succession of the Adelaide Rift System. Stratigraphic sequences have been mapped and can be tied to recent drilling for mineral and geothermal exploration. Shallow drill holes from past petroleum exploration have aided the assessment of the petroleum potential of the Cambrian Hawker Group, which contains bitumen in the core, indicating the presence of source rocks in the basin system.

2011 ◽  
Vol 51 (2) ◽  
pp. 703
Author(s):  
Lidena Carr ◽  
Russell Korsch ◽  
Wolfgang Preiss ◽  
Sandra Menpes ◽  
Josef Holzschuh ◽  
...  

The Onshore Energy Security Program—funded by the Australian Government and conducted by Geoscience Australia—has acquired deep seismic reflection data in conjunction with state and territory geological surveys, across several frontier sedimentary basins to stimulate petroleum exploration in onshore Australia. Here, we present data from two seismic lines collected in SA and NT. Seismic line 08GA-OM1 crossed the Arckaringa and Officer basins in SA and the southern-most Amadeus Basin in NT. Seismic line 09GA-GA1 crossed the northeastern part of the Amadeus Basin and the complete width of the southern Georgina Basin in NT. Structural and sequence stratigraphic interpretations of the seismic lines will be presented here, followed by an assessment of the petroleum potential of the basins. Seismic line 08GA-OM1 also crosses the Neoproterozoic to Devonian eastern Officer Basin. The basin is structurally complex in this area, being dominated by south-directed thrust faults and fault-related folds—providing potential for underthrust petroleum plays. The northern margin of the basin is overthrust to the south by the Mesoproterozoic Musgrave Province. To the north, the Moorilyanna Trough of the Officer Basin is a major depocentre of up to 7,000 m deep. Both seismic lines cross parts of the eastern Amadeus Basin. Seismic line 08GA-OM1 shows that the southern margin of the basin is overthrust to the north by the Musgrave Province with the main movement during the Petermann Orogeny. In the northeast, seismic line 09GA-GA1 crosses two parts of the basin separated by the Paleoproteroozic to Mesoproterozoic Casey Inlier (part of the Arunta Region). The northern margin of the basin is imaged seismically as a southward-verging, thinned-skinned thrust belt, showing considerable structural thickening of the stratigraphic succession. Seismic line 09GA-GA1 was positioned to cross that part of the southern Georgina Basin that was considered previously to be in the oil window. Here, the basin has a complex southern margin, with Neoproterozoic stratigraphy being thrust interleaved with basement rocks of the Arunta Region. The main part of the basin, containing a Neoproterozoic to Devonian succession, is asymmetric, thinning to the north where it overlies the Paleoproterozoic Davenport Province. The well, Phillip–2, drilled adjacent to the seismic line, intersected basement at a depth of 1,489 m, and has been used to map the stratigraphic sequences across the basin.


2012 ◽  
Vol 52 (2) ◽  
pp. 670
Author(s):  
Lidena Carr ◽  
Russell Korsch ◽  
Arthur Mory ◽  
Roger Hocking ◽  
Sarah Marshall ◽  
...  

During the past five years, the Onshore Energy Security Program, funded by the Australian Government and conducted by Geoscience Australia, in conjunction with state and territory geological surveys, has acquired deep seismic reflection data across several frontier sedimentary basins to stimulate petroleum exploration in onshore Australia. This extended abstract presents data from two seismic lines collected in Western Australia in 2011. The 487 km long Yilgarn-Officer-Musgrave (YOM) seismic line crossed the western Officer Basin in Western Australia, and the 259 km long, Southern Carnarvon Seismic line crossed the Byro Sub-basin of the Southern Carnarvon Basin. The YOM survey imaged the Neoproterozoic to Devonian western Officer Basin, one of Australia's underexplored sedimentary basins with hydrocarbon potential. The survey data will also provide geoscientific knowledge on the architecture of Australia's crust and the relationship between the eastern Yilgarn Craton and the Musgrave Province. The Southern Carnarvon survey imaged the onshore section of the Ordovician to Permian Carnarvon Basin, which offshore is one of Australia's premier petroleum-producing provinces. The Byro Sub-basin is an underexplored depocentre with the potential for both hydrocarbon and geothermal energy. Where the seismic traverse crossed the Byro Sub-basin it imaged two relatively thick half graben, on west dipping bounding faults. Structural and sequence stratigraphic interpretations of the two seismic lines are presented in this extended abstract.


2012 ◽  
Vol 33 (5) ◽  
pp. 869-885 ◽  
Author(s):  
Abdullah Ates ◽  
Funda Bilim ◽  
Aydin Buyuksarac ◽  
Attila Aydemir ◽  
Ozcan Bektas ◽  
...  

2018 ◽  
Vol 123 (12) ◽  
pp. 10,810-10,830
Author(s):  
Michael Dentith ◽  
Huaiyu Yuan ◽  
Ruth Elaine Murdie ◽  
Perla Pina-Varas ◽  
Simon P. Johnson ◽  
...  

2020 ◽  
Author(s):  
Craig Magee ◽  
Christopher A.-L. Jackson

Abstract. Dyke swarms are common on Earth and other planetary bodies, comprising arrays of dykes that can extend for 10's to 1000's of kilometres. The vast extent of such dyke swarms, and their rapid emplacement, means they can significantly influence a variety of planetary processes, including continental break-up, crustal extension, resource accumulation, and volcanism. Determining the mechanisms driving dyke swarm emplacement is thus critical to a range of Earth Science disciplines. However, unravelling dyke swarm emplacement mechanics relies on constraining their 3D structure, which is extremely difficult given we typically cannot access their subsurface geometry at a sufficiently high enough resolution. Here we use high-quality seismic reflection data to identify and examine the 3D geometry of the newly discovered Exmouth Dyke Swarm, and associated structures (i.e. dyke-induced normal faults and pit craters), in unprecedented detail. The latest Jurassic dyke swarm is located on the Gascoyne Margin offshore NW Australia and contains numerous dykes that are > 170 km long, potentially > 500 km long. The mapped dykes are distributed radially across a 39° arc centred on the Cuvier Margin; we infer this focal area marks the source of the dyke swarm, which was likely a mantle plume. We demonstrate seismic reflection data provides unique opportunities to map and quantify dyke swarms in 3D in sedimentary basins, which can allow us to: (i) recognise dyke swarms across continental margins worldwide and incorporate them into models of basin evolution and fluid flow; (ii) test previous models and hypotheses concerning the 3D structure of dyke swarms; (iii) reveal how dyke-induced normal faults and pit craters relate to dyking; and (iv) unravel how dyking translates into surface deformation.


Sign in / Sign up

Export Citation Format

Share Document