THE PETROLEUM PROSPECTIVITY OF THE CLARENCE-MORETON BASIN IN NEW SOUTH WALES

1985 ◽  
Vol 25 (1) ◽  
pp. 15
Author(s):  
P. Ties ◽  
R.D. Shaw ◽  
G.C. Geary

The Clarence-Moreton Basin covers an area of some 28 000 km2 in north-eastern New South Wales and south-eastern Queensland. The basin is relatively unexplored, with a well density in New South Wales of one per 1600 km2. Since 1980, Endeavour Resources and its co-venturers have pursued an active exploration programme which has resulted in the recognition of significant petroleum potential in the New South Wales portion of the basin.Previous studies indicated that the Upper Triassic to Lower Cretaceous Clarence-Moreton Basin sequence in general, lacked suitable reservoirs and had poor source- rock potential. While exinite rich, oil-prone source rocks were recognised in the Middle Jurassic Walloon Coal Measures, they were considered immature for oil generation. Moreover, during the 1960's the basin acquired a reputation as an area where seismic records were of poor quality.These ideas are now challenged following the results of a new round of exploration which commenced in the New South Wales portion of the basin in 1980. This exploration has involved the acquisition of over 1000 km of multifold seismic data, the reprocessing of some 200 km of existing single fold data, and the drilling of one wildcat well. Over twenty large structural leads have been identified, involving trapping mechanisms ranging from simple drape to antithetic and synthetic fault blocks associated with normal and reverse fault dependent and independent closures.The primary exploration targets in the Clarence- Moreton Basin sequence are Lower Jurassic sediments comprising a thick, porous and permeable sandstone unit in the Bundamba Group, and channel and point-bar sands in the Marburg Formation. Source rocks in these and the underlying Triassic coal measures are gas-prone and lie at maturity levels compatible with gas generation. In contrast, it was established from the results of Shannon 1 that the Walloon Coal Measures are mature for oil generation and this maturity regime is now considered to be applicable to most of the basin in New South Wales.A consideration of reservoir and source rock distribution, together with structural trends across the basin in Petroleum Exploration Licences 258 and 259, has led to the identification of three prospective fairways, two of which involve shallow oil plays. Exploration of these fairways is currently the focus of an ongoing programme of further seismic data acquisition and drilling.

1918 ◽  
Vol 5 (7) ◽  
pp. 289-293
Author(s):  
R. Etheridge ◽  
A.C. Seward

In 1849 Professor J. D. Dana described certain leaves from the Illawarra District and Newcastle, New South Wales, occurring in the Upper Coal-measures. To these he gave the name of Noeggerathia spathulata and N. media. Long after, in 1879 to be exact, Dr. O. Feistmantel established his genus Noeggerathiopsis for the reception of similar leaves from the Talchir-Kararbari Beds of the Lower Gondwana System, and from his remarks it may, by inference, be concluded that Dana's were included in the new genus also. This inference is justified by Feistmantel's later definite reference of these leaves to Noeggerathiopsis; at the same time he added another species, N. prisca, from the Lower Coal-measures at Greta. He believed them to be closely allied with Cycadeaceae.


2003 ◽  
Vol 43 (1) ◽  
pp. 495 ◽  
Author(s):  
P.A. Arditto

The study area is within PEP 11, which is more than 200 km in length, covers an area over 8,200 km2 and lies immediately offshore of Sydney, Australia’s largest gas and petroleum market on the east coast of New South Wales. Permit water depths range from 40 m to 200 m. While the onshore Sydney Basin has received episodic interest in petroleum exploration drilling, no deep exploration wells have been drilled offshore.A reappraisal of available data indicates the presence of suitable oil- and wet gas-prone source rocks of the Late Permian coal measure succession and gas-prone source rocks of the middle to early Permian marine outer shelf mudstone successions within PEP 11. Reservoir quality is an issue within the onshore Permian succession and, while adequate reservoir quality exists in the lower Triassic succession, this interval is inferred to be absent over much of PEP 11. Quartz-rich arenites of the Late Permian basal Sydney Subgroup are inferred to be present in the western part of PEP 11 and these may form suitable reservoirs. Seismic mapping indicates the presence of suitable structures for hydrocarbon accumulation within the Permian succession of PEP 11, but evidence points to significant structuring post-dating peak hydrocarbon generation. Uplift and erosion of the order of 4 km (based on onshore vitrinite reflectance studies and offshore seismic truncation geometries) is inferred to have taken place over the NE portion of the study area within PEP 11. Published burial history modelling indicates hydrocarbon generation from the Late Permian coal measures commenced by or before the mid-Triassic and terminated during a mid-Cretaceous compressional uplift prior to the opening of the Tasman Sea.Structural plays identified in the western and southwestern portion of PEP 11 are well positioned to contain Late Permian clean, quartz-rich, fluvial to nearshore marine reservoir facies of the coal measures. These were sourced from the western Tasman Fold Belt. The reservoir facies are also well positioned to receive hydrocarbons expelled from adjacent coal and carbonaceous mudstone source rock facies, but must rely on early trap integrity or re-migrated hydrocarbons and, being relatively shallow, have a risk of biodegradation. Structural closures along the main offshore uplift appear to have been stripped of the Late Permian coal measure succession and must rely on mid-Permian to Early Permian petroleum systems for hydrocarbon generation and accumulation.


Sign in / Sign up

Export Citation Format

Share Document