permian coal
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 26)

H-INDEX

26
(FIVE YEARS 3)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Dongna Liu ◽  
Yun Zhang ◽  
Anchao Zhou ◽  
Emmanuel Nnachi ◽  
Shuting Huo ◽  
...  

In order to ascertain the kaolinite crystallinity of Carboniferous Permian coal-measure kaolinite rocks, seven groups of fresh samples were collected from below the ground in the Xiaoyu mine, Datong coalfield. Microscopy, X-ray diffraction (XRD), differential thermal analysis (DTA), infrared (IR) spectroscopy and X-ray fluorescence (XRF) spectrometry methods were applied to the samples. The petrographic analysis results show that the kaolinite rocks are characterized as compact, phaneritic, clastic, sand-bearing, sandy and silty types; the kaolinite content in the Shanxi formation and upper Taiyuan formations was more than 95%, while it was 60–90% in the middle and lower Taiyuan formations. Based on the Hinckley index and the features of XRD, DTA and IR of kaolinites, crystallinity was classified as having three grades: ordered, slightly disordered and disordered. The kaolinites’ SiO2 /Al2O3 molar ratio was about 1.9–5.7, with a chemical index of alteration (CIA) of about 95.4–99.5. This research suggests that the kaolinite crystallinity correlates positively to its clay mineral content, purity and particle size, which are also related to the SiO2/Al2O3 molar ratio and CIA. The original sedimentary environment and weathering have a direct influence on kaolinite crystallinity, and the existence of organic matter is conducive to the stable existence of kaolinite. The study results have significance for the extraction and utilization of coal-measure kaolinite and the development of kaolinite crystallography and mineralogy.


Author(s):  
Laurent Mosse ◽  
◽  
Stephen Pell ◽  
Thomas J. Neville ◽  
◽  
...  

Growth in the coal seam gas industry in Queensland, Australia, has been rapid over the past 15 years, with greater than USD 70 billion invested in three liquified natural gas export projects supplied by produced coal seam gas. Annual production is of the order of 40 Bscm or 1,500 PJ, with approximately 80% of this coming from the Jurassic Walloon Coal Measures of the Surat Basin and 20% from the Permian Coal Measures of the Bowen Basin. The Walloon Coal Measures are characterized by multiple thin coal seams making up approximately 10% of the total thickness of the unit. A typical well intersects 10 to 20 m of net coal over a 200- to 300-m interval, interbedded with lithic-rich sandstones, siltstones, and carbonaceous mudstones. The presence of such a significant section of lithic interburden within the primary production section has led to a somewhat unusual completion strategy. To maximize connection to the gas-bearing coals, uncemented slotted liners are used; however, this leaves fluid-sensitive interburden exposed to drilling, completion, and produced formation fluids over the life of a well. External swellable packers and blank joints are therefore used to isolate larger intervals of interburden and hence minimize fines production. Despite these efforts, significant fines production still occurs, which leads to the failure of artificial lift systems and the need for expensive workovers or lost wells. Fines production has major economic implications, with anecdotal reports suggesting up to 40% of progressive cavity pump artificial lift systems in Walloon Coal Measures producers may be down at any one time. The first step in solving this problem is to identify the extent and distribution of fines production. The wellbore completion strategy above, however, precludes the use of mechanical calipers to identify fines-production-related wellbore enlargement. A new caliper-behind-liner technique has therefore been developed using a multiple-detector density tool. Data from the shorter-spacing detectors are used to characterize the properties of the liner as well as the density of the annular material. This is particularly important to evaluate as the annulus fill varies between gas, formation water, drilling and completion fluids, and accumulated fines. The longer-spacing detector measurements are then used in conjunction with pre-existing openhole formation density measurements to determine the thickness of the annulus, and hence hole size, compensating for liner and annulus properties.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1230
Author(s):  
Chunguang Zhang ◽  
Jun Wang ◽  
Mingshi Feng ◽  
Zhiqiang Shi ◽  
Fang Xiang ◽  
...  

Late Permian coal deposits are widely distributed throughout southwestern China. This paper describes the petrological composition of the last coal seam in the Longmendong section of the Emeishan area during the latest Changhsingian (Permian) and records important information regarding the evolution of the mass extinction event that occurred at the end of the Permian. The results show that the dominant coal maceral group is vitrinite, followed by liptinite and inertinite macerals, and the coal minerals include quartz, chamosite and pyrite. The pyrofusinite and carbon microparticles occurrence modes could have been formed during wildfires in the adjacent areas. The β-tridymite occurrence modes and the high proportions and occurrence modes of magmatic quartz indicate that synchronous felsic volcanic activity occurred during the peat mire accumulation period. The chamosite and quartz occurrence modes suggest that they primarily precipitated from Fe-Mg-rich siliceous solutions that was derived from the weathering of nearby Emeishan basalt. The pyritic coal balls occurrence modes in the C1 coal seam are likely the result of coal-forming plants and Fe-Mg-rich siliceous solutions in neutral to weak alkaline conditions during late syngenetic stages or early epigenetic stages within paleomires.


2021 ◽  
Vol 2 (2) ◽  
pp. 103-108
Author(s):  
Pavel S. Lapin

One of the possible methods for assessing modern geodynamic processes in the development of the earth's surface relief is described. It is based on the analysis of the exogenously active layer. Within its limits, the relief-forming process is studied as a result of the interaction of endogenous and exogenous forces, which occurs under the influence of neotectonic movements. As a result of modeling within the research object, the correspondence of the latest movements and formations was established not only of the Carboniferous-Permian coal-bearing basin, confirmed by gravimetric data, but also of the Permian-Triassic volcano-plutonic province.


2021 ◽  
Author(s):  
Laurent Mosse ◽  
◽  
Stephen Pell ◽  
Thomas Neville ◽  
◽  
...  

Growth in the coal seam gas industry in Queensland, Australia, has been rapid over the past fifteen years, with greater than USD 70 billion invested in three liquified natural gas export projects supplied by produced coal seam gas. Annual production is of the order of 40 Bscm or 1,500 PJ, with approximately 80% of this coming from the Jurassic Walloon Coal Measures of the Surat Basin and 20% from Permian coal measures of the Bowen Basin. The Walloon Coal Measures are characterized by multiple thin coal seams making up approximately 10% of the total thickness of the unit. A typical well intersects 10 to 20 m of net coal over a 200 to 300 m interval, interbedded with lithic-rich sandstones, siltstones, and carbonaceous mudstones. The presence of such a significant section of lithic interburden within the primary production section has led to a somewhat unusual completion strategy. To maximize connection to the gas-bearing coals, uncemented slotted liners are used; however, this leaves fluid-sensitive interburden exposed to drilling, completion, and produced formation fluids over the life of a well. External swellable packers and blank joints are therefore used to isolate larger intervals of interburden and hence minimize fines production. Despite these efforts, significant fines production still occurs, which leads to failure of artificial lift systems and the need for expensive workovers or lost wells. Fines production has major economic implications, with anecdotal reports suggesting up to 40% of progressive cavity pump artificial lift systems in Walloon Coal Measures producers may be down at any one time. The first step in solving this problem is to identify the extent and distribution of fines production. The wellbore completion strategy above, however, precludes use of mechanical calipers to identify fines production-related wellbore enlargement. A new caliper-behind-liner technique has therefore been developed using a multiple-detector density tool. Data from the shorter spacing detectors is used to characterize the properties of the liner as well as the density of the annular material. This is particularly important to evaluate as the annulus fill varies between gas, formation water, drilling and completion fluids, and accumulated fines. The longer spacing detector measurements are then used in conjunction with pre-existing open-hole formation density measurement to determine the thickness of the annulus, and hence hole size, compensating for liner and annulus properties. This methodology has been applied to several wells completed in the Walloon Coal Measures. Results have demonstrated the ability to identify zones of borehole enlargement behind slotted liner, as well as intervals of either gas or fines accumulation in the annulus. In addition, the technique has been successful in verifying the placement of swellable packers and their integrity. The application of this solution has been used to drive improvements in the design of in-wellbore completion programs and in the future will help drive recompletion decisions and trigger proactive workovers.


2021 ◽  
Vol 24 (4) ◽  
pp. 397-408
Author(s):  
Han Sijie ◽  
Sang Shuxun ◽  
Zhou Peiming ◽  
Jia Jinlong ◽  
Liang Jingjing

In the Jiyang Sub-basin, Carboniferous-Permian (C-P) coal-measure source rocks have experienced complex multi-stage tectonics and therefore have a complex history of hydrocarbon generation. Because these coal measures underwent multi-stage burial and exhumation, they are characterized by various burial depths. In this study, we used the basin modeling technique to analyze the relationship between burial history and hydrocarbon generation evolution. The burial, thermal and maturity histories of C-P coals were reconstructed, including primary hydrocarbon generation, stagnation, re-initiation, and peak secondary hydrocarbon generation. The secondary hydrocarbon generation stage within this reconstruction was characterized by discontinuous generation and geographical differences in maturity due to the coupled effects of depth and a delay of hydrocarbon generation. According to the maturity history and the delay effect on secondary hydrocarbon generation, we concluded that the threshold depth of secondary hydrocarbon generation in the Jiyang Sub-basin occurred at 2,100 m during the Yanshan epoch (from 205 Ma to 65 Ma) and at 3,200 m during the Himalayan period (from 65 Ma to present). Based on depth, residual thickness, maturity, and hydrocarbon-generating intensity, five favorable areas of secondary hydrocarbon generation in the Jiyang Sub-basin were identified, including the Chexi areas, Gubei-Luojia areas, Yangxin areas, the southern slope of the Huimin depression and southwest of the Dongying depression. The maximum VRo/burial depth (%/km) occurred in the Indosinian epoch as the maximum VRo/time (%/100Ma) happened in the Himalayan period, indicating that the coupling controls of temperature and subsidence rate on maturation evolution play a significant role in the hydrocarbon generation evolution. A higher temperature and subsidence rate can both enhance the hydrocarbon generation evolution.  


2021 ◽  
Vol 8 ◽  
Author(s):  
Stephen McLoughlin ◽  
Robert S. Nicoll ◽  
James L. Crowley ◽  
Vivi Vajda ◽  
Chris Mays ◽  
...  

The newly defined Frazer Beach Member of the Moon Island Beach Formation is identified widely across the Sydney Basin in both outcrop and exploration wells. This thin unit was deposited immediately after extinction of the Glossopteris flora (defining the terrestrial end-Permian extinction event). The unit rests conformably on the uppermost Permian coal seam in most places. A distinctive granule-microbreccia bed is locally represented at the base of the member. The unit otherwise consists of dark gray to black siltstone, shale, mudstone and, locally, thin lenses of fine-grained sandstone and tuff. The member represents the topmost unit of the Newcastle Coal Measures and is overlain gradationally by the Dooralong Shale or with a scoured (disconformable) contact by coarse-grained sandstones to conglomerates of the Coal Cliff Sandstone, Munmorah Conglomerate and laterally equivalent units. The member is characterized by a palynological “dead zone” represented by a high proportion of degraded wood fragments, charcoal, amorphous organic matter and fungal spores. Abundant freshwater algal remains and the initial stages of a terrestrial vascular plant recovery flora are represented by low-diversity spore-pollen suites in the upper part of the unit in some areas. These assemblages are referable to the Playfordiaspora crenulata Palynozone interpreted as latest Permian in age on the basis of high precision Chemical Abrasion Isotope Dilution Thermal Ionization Mass Spectrometry (CA-IDTIMS) dating of thin volcanic ash beds within and stratigraphically bracketing the unit. Plant macrofossils recovered from the upper Frazer Beach Member and immediately succeeding strata are dominated by Lepidopteris (Peltaspermaceae) and Voltziopsis (Voltziales) with subsidiary pleuromeian lycopsids, sphenophytes, and ferns. Sparse vertebrate and invertebrate ichnofossils are also represented in the Frazer Beach Member or in beds immediately overlying this unit. The Frazer Beach Member is correlative, in part, with a thin interval of organic-rich mudrocks, commonly known as the “marker mudstone” capping the Permian succession further to the north in the Bowen, Galilee and Cooper basins. The broad geographic distribution of this generally <5-m-thick mudrock unit highlights the development in eastern Gondwana of extensive, short-lived, shallow lacustrine systems with impoverished biotas in alluvial plain settings in the immediate aftermath of the end-Permian biotic crisis.


2021 ◽  
Vol 21 (1) ◽  
pp. 727-740
Author(s):  
Zhi Xu ◽  
Ming Li ◽  
Yu Xu ◽  
Luwei Sun

Much attention has been recently paid to the Carboniferous-Permian coal-bearing strata in Shanxi Province, now the largest producing coalbed methane field in China. In this study, a comprehensive approach of mercury injection, low-temperature liquid nitrogen adsorption, and permeability experiments was adopted to investigate the structure and fractal characteristics of nanopores in the Carboniferous-Permian coal (with 0.77%˜3.04% Ro,ran). Based on the fractal model, two fractal dimensions D1 and D2 corresponding to diffusion pore (<65 nm) and seepage pore (pore size ≥65 nm), respectively, were calculated, and the relationships between the fractal dimensions with the pore structure parameters and permeability are discussed here. The results indicate that the studied coal samples have good fractal characteristics and that the calculated linear correlation coefficients are higher than 0.80. The fractal dimension D1 of the diffusion pores ranges from 2.3777 to 2.4624, with an average of 2.4173, while the fractal dimension D2 of the seepage pores is between 2.5844 and 2.6256, with an average of 2.5990. The fractal dimensions D1 of the diffusion pores increases with an increase in the BET specific surface area, vitrinite content, and Ro,ran while it decreases with an increase in the permeability, and has a weak correlation with the total pore volume. The correlation coefficients R2 for the fractal dimension D2 of the seepage pores, pore parameters, permeability, and maceral composition ranges from 0.0357 to 0.2551. These results indicate that uncertain relationships exist among these parameters.


Sign in / Sign up

Export Citation Format

Share Document