6 THE EFFECTS OF DEPLETING DONOR CELL MITOCHONDRIAL DNA ON CATTLE EMBRYOS DERIVED FROM SOMATIC CELL NUCLEAR TRANSFER

2016 ◽  
Vol 28 (2) ◽  
pp. 132 ◽  
Author(s):  
K. Srirattana ◽  
J. C. St. John

Although somatic cell nuclear transfer (SCNT) is a valuable tool for producing animals for agricultural and research purposes, the resultant mixing of mitochondrial DNA (mtDNA) from the donor cell and recipient oocyte (heteroplasmy) affects embryo development and offspring survival and health. The aim of this study was to determine the effects of depleting donor cells of their mtDNA before SCNT on embryo development. mtDNA was depleted from cattle fibroblasts using 2′,3′-dideoxycytidine. mtDNA copy number in cells depleted for 30 days (0.85 ± 0.05) was significantly decreased when compared with nondepleted cells (150.12 ± 29.90; P < 0.0001, ANOVA). Moreover, mtDNA copy number in depleted cells could not be replenished after depletion for 30 days. Depleted cells and nondepleted cells were used as donor cells for SCNT. Somatic cell nuclear transfer embryos were produced by electrofusion of a single donor cell with an enucleated cow oocyte. Reconstructed oocytes were chemically activated and cultured for 7 days (nontreated embryos). Another cohort of embryos was treated with Trichostatin A (TSA), to enhance reprogramming, by activating reconstructed oocytes and culturing them in the presence of 50 nM TSA for up to 10 h. The embryos were then cultured in the absence of TSA. In nontreated groups, the fusion rates of depleted cells (78.0 ± 0.8%) were significantly lower than those of nondepleted cells (92.1 ± 1.4%; P < 0.05). No positive effect on fusion rates was found after TSA treatment. The blastocyst rate for SCNT embryos derived from depleted cells (18.7 ± 4.9%) was significantly lower than the nondepleted group (32.5 ± 3.1%; P < 0.05). Trichostatin A treatment increased blastocyst rates for SCNT embryos derived from depleted cells (32.5 ± 5.3%) to levels equivalent to those of nondepleted cells but did not have any beneficial effect on SCNT embryos derived from nondepleted cells. We have analysed blastocysts for the presence of donor cell mtDNA by high resolution melting analysis. Four out of 10 SCNT blastocysts derived from nondepleted cells were heteroplasmic, whereas others had no donor cell mtDNA. However, all 10 analysed SCNT blastocysts derived from depleted cells were homoplasmic as they harboured only oocyte mtDNA. From RNA sequencing results, TSA treatment of SCNT blastocysts derived from depleted cells increased the expression of key developmental transcription regulators and decreased expression of the mtDNA-specific replication factors, which is essential for embryo development. In conclusion, homoplasmic SCNT embryos were successfully produced by using mtDNA depleted donor cells. Trichostatin A treatment enhanced nuclear reprogramming efficiency in SCNT embryos derived from depleted cells. This work was supported by MitoStock Pty. Ltd., Australia.

2017 ◽  
Vol 7 (7) ◽  
pp. 2065-2080 ◽  
Author(s):  
Kanokwan Srirattana ◽  
Justin C St. John

Abstract The mixing of mitochondrial DNA (mtDNA) from the donor cell and the recipient oocyte in embryos and offspring derived from somatic cell nuclear transfer (SCNT) compromises genetic integrity and affects embryo development. We set out to generate SCNT embryos that inherited their mtDNA from the recipient oocyte only, as is the case following natural conception. While SCNT blastocysts produced from Holstein (Bos taurus) fibroblasts were depleted of their mtDNA, and oocytes derived from Angus (Bos taurus) cattle possessed oocyte mtDNA only, the coexistence of donor cell and oocyte mtDNA resulted in blastocysts derived from nondepleted cells. Moreover, the use of the reprogramming agent, Trichostatin A (TSA), further improved the development of embryos derived from depleted cells. RNA-seq analysis highlighted 35 differentially expressed genes from the comparison between blastocysts generated from nondepleted cells and blastocysts from depleted cells, both in the presence of TSA. The only differences between these two sets of embryos were the presence of donor cell mtDNA, and a significantly higher mtDNA copy number for embryos derived from nondepleted cells. Furthermore, the use of TSA on embryos derived from depleted cells positively modulated the expression of CLDN8, TMEM38A, and FREM1, which affect embryonic development. In conclusion, SCNT embryos produced by mtDNA depleted donor cells have the same potential to develop to the blastocyst stage without the presumed damaging effect resulting from the mixture of donor and recipient mtDNA.


2010 ◽  
Vol 22 (9) ◽  
pp. 26
Author(s):  
Y. Jiang ◽  
R. Kelly ◽  
A. Peters ◽  
H. Fulka ◽  
D. A. Mitchell ◽  
...  

Interspecies somatic cell nuclear transfer (iSCNT) offers significant opportunities to analyze and understand nuclear-cytoplasmic interactions. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility, specifically mitochondrial DNA (mtDNA), on successful development. Transfer of somatic murine fetal fibroblasts into enucleated porcine oocytes resulted in extremely low blastocyst rates (0.4%); increased DNA strand breaks; deficient nuclear pore complex arrangements and increased aberrant karyokinesis than observed in porcine-porcine SCNT embryos. Using allele specific-PCR analysis, murine mtDNA was detected at ever-decreasing levels to the blastocyst stage, with peak levels being 0.14 ± 0.055% in 2-cell embryos. Furthermore, these embryos reduced total mtDNA copy number during preimplantation development in a manner similar to porcine embryos. Injecting mouse embryonic stem cell extract and mitochondria along with the murine donor cell into a mitochondria depleted porcine oocyte, increased blastocyst zona pellucida thinning and blastocyst rates significantly (0.4% vs 3.42%) compared to the non-supplemented iSCNT group. They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout preimplantation development. At later stages of preimplantation development, they possessed 48.00% ± 17.38% murine mtDNA and exhibited a mtDNA copy number profile similar to murine embryos. Overall, these data demonstrate that the addition of species compatible cytoplasmic factors and mitochondrial DNA improve developmental competence of iSCNT embryos.


2012 ◽  
Vol 24 (1) ◽  
pp. 126
Author(s):  
X. Yang ◽  
J. Mao ◽  
E. M. Walters ◽  
M. T. Zhao ◽  
K. Lee ◽  
...  

Somatic cell nuclear transfer (SCNT) efficiency in pigs and other species is still very low. This low efficiency and the occurrence of developmental abnormalities in offspring has been attributed to incomplete or incorrect reprogramming. Cytoplasmic extracts from both mammalian and amphibian oocytes can alter the epigenetic state of mammalian somatic nuclei as well as gene expression to more resemble that of pluripotent cells. Rathbone et al. (2010) has showed that pretreating somatic donor cells with frog oocyte extract (FOE) increased live birth in ovine. Liu et al. (2011) also reported that treating donor cells with FOE enhanced handmade clone embryo development in pigs. The aim of this study was to evaluate the early development of cloned embryos produced with porcine GFP fibroblasts pre-treated with a permeabilizing agent, digitonin and matured frog oocyte extract. Frog egg cytoplasmic extract was prepared from one frog's oocytes after being matured in vitro to MII stage. The experiment included 2 groups. In the FOE-treated group, GFP-tagged fetal fibroblasts were permeabilized by digitonin (15 ng mL–1) and incubated in FOE containing an ATP-regenerating system (2.5 mM ATP, 125 μM GTP, 62.5 μg mL–1 of creatine kinase, 25 mM phosphocreatine and 1 mM NTP) at room temperature (24°C) for 2 h; cell membranes were re-sealed by culturing in 10% FBS in DMEM media for 2.5 h at 38.5°C before used as donor cells. In the control group, the same donor cells were treated with digitonin, but without frog oocyte extract incubation. The SCNT embryos were produced by using the 2 groups of donor cells as described above. In total, 305 control and 492 FOE oocytes were enucleated from 8 biological replicates. Two hundred fifty control and 370 FOE couplets were fused and cultured in porcine zygote medium 3. Percent cleavage was recorded on Day 2 and the percent blastocyst formation was determined on Day 7 (SCNT day = 0). In addition, the number of nuclei in the blastocysts was recorded on Day 7. Percent fusion, cleavage, blastocyst formation and number of nuclei in blastocysts were analysed by using SAS software (v9.2), with day and treatment class as main effects. There was no difference in percent fusion (FOE, 76.2 ± 2.5% vs control, 80.8 ± 2.8%) or in cleavage (FOE: 74.8 ± 2.5% vs control: 74.6 ± 2.9%). Only green blastocysts with 16 or more nuclei were considered to be a true SCNT blastocyst. The percent blastocyst was higher in the FOE group than that in the control (13.9 ± 0.8% vs 9.5 ± 0.9%, P < 0.05), whereas the number of nuclei in the blastocysts was not different between the 2 groups (39.7 ± 2.4, 35.9 ± 3.8 for FOE and control, respectively). In conclusion, our study demonstrated that pre-treatment of donor cells with digitonin and Xenopus MII oocyte extract increased porcine SCNT embryo development to blastocyst and cloning efficiency. Funded by the National Natural Science Foundation of China (NO. 31071311), Natural Science Foundation of Fujian Province of China (No. 2009J06017) and NIH U42 RR18877.


2010 ◽  
Vol 22 (1) ◽  
pp. 192
Author(s):  
Y. Liu ◽  
O. Østrup ◽  
J. Li ◽  
G. Vajta ◽  
L. Lin ◽  
...  

Pretreatment of somatic cells to promote subsequent reprogramming during somatic cell nuclear transfer (SCNT) may significantly improve efficiency of the technique. The aim of this study was to evaluate the effect of Xenopus laevis egg extract pretreatment of porcine fetal fibroblast cells using different permeabilization agents prior to SCNT. Fibroblasts were permeabilized using streptolysin O (SLO; 300 ng mL-1, 30 min, 37°C) or digitonin (7 μg mL-1, 2 min, 4°C), and exposed to egg extract for 1 h or 0.5 h, respectively. Cell membranes were resealed in DMEM supplemented with 2 mM CaCl2 for 2 h. After culture for 1, 3, and 5 days (for SLO) or 3 and 5 days (for digitonin), the SLO extract-treated cells (SETC) and digitonin extract-treated cells (DETC) were used as donor karyoplasts for handmade cloning. Controls were SCNT with nontreated cells. Embryos were evaluated for cleavage rate (Day 2), blastocyst rate (Day 6), and total cell numbers of blastocysts. Statistical differences were analyzed by ANOVA. Results are summarized in Table 1. When SETC were used as donors, blastocyst rates were significantly lower compared with the controls, except when the donor cells were cultured for 3 days after treatment. Blastocysts of the latter group also had higher total cell number. With DETC as donors, blastocyst rates and total cell number of embryos at Day 6 reconstructed with cells cultured for 5 days were higher than those in other groups. Results indicate that extract treatment of the donor cells after SLO-permeabilization can give higher number of cells in cloned blastocysts but not improve overall embryo development. However, digitonin treatment for donor cell permeabilization improved both embryo development and cell number of blastocyst. The latter effect was detected only 5 days after the treatment. In conclusion, qualitative efficiency of porcine SCNT could be improved with a combined donor cell permeabilization and extract treatment. Table 1.Effect of different permeabilization agents prior to SCNT


2006 ◽  
Vol 18 (2) ◽  
pp. 125
Author(s):  
J. Estrada ◽  
E. Lee ◽  
J. Piedrahita

Donor cell quality is one of the most important factors affecting somatic cell nuclear transfer (SCNT) in mammals. Many studies have been carried out to improve the donor cell characteristics in nuclear transfer, including studies on cell type, cell cycle stage, cell passage, and handling of donor cells before the SCNT. Even though most SCNT work is done with donor cells that have been previously frozen and thawed, no studies have been conducted to evaluate the effect of the cell freezing rate on the SCNT efficiency. The objective of this experiment was to evaluate the effect of the cell freezing method on development of pig SCNT embryos in vitro. Fibroblasts were collected from a 29-day-old female fetus, suspended in DMEM-F12 + 40% fetal bovine serum (FBS) + 10% dimethyl sulfoxide (DMSO), and placed in 1.6-mL cryovials for freezing. Vials were randomly assigned to two treatments: In treatment 1, cells were frozen at a controlled rate of 1�C/min in a programmable machine (P) until -40�C, and then plunged into liquid nitrogen (LN2; -196�C). In treatment 2, the traditional system (T), vials were placed in a styrofoam box and left overnight in a freezer at -80�C. The next day samples were plunged into LN2 (196�C). For each treatment, cells were thawed and cultured until confluence before being used for SCNT. Cells were used at passages 2 and 6. Cumulus-oocyte complexes (COCs) were aspirated from slaughterhouse ovaries and cultured for 39 h in TCM 199 supplemented with 10% porcine follicular fluid (pFF), 5 �g/mL insulin, 10 ng/mL epidermal growth factor (EGF), 0.6 mM cysteine, 0.2 mM pyruvate, 25 �g/mL gentamycin and 5 �g/mL each of equine and human chorionic gonadotropin (eCG and hCG). Oocytes were stained with bisbenzimide and enucleated in manipulation media with 7.5 �g/mL cytochalasin B by removing the first polar body and metaphase plate by means of a 16-�m beveled glass pipette. Cells from each treatment were injected into the perivitelline space of recipient enucleated oocytes and fused by two DC pulses of 140 V for 50 �s in fusion media. The fusion rate was evaluated 1 h later, and reconstructed oocytes were activated by two DC pulses of 120 V for 60 �s. After activation, oocytes were placed in bicarbonate-buffered NCSU-13 with 0.4% BSA and cultured at 38.5�C, 5% CO2 in a humidified atmosphere. Embryos were observed for cell cleavage at Day 2, and blastocyst development rate and cell number counting were done at Day 7 of culture. Every experiment was repeated three times. The temperature descending rate for P was slower and more linear (1�C/min vs. 2�C/min) than for the T method. Fusion rate was not significantly affected (P < 0.05) by the freezing method when they were evaluated either individually at each passage or accumulated regardless the passage (78.9 � 3.6% vs. 79.4 � 6.3%) for P and T, respectively. The same trends were observed for cleavage (61.2 � 5.2% vs. 64.3 � 5.2%), blastocyst development (4.2 � 1.8% vs. 5.0 � 2.8%), and number of cells at the blastocyst stage (19.4 � 3.1 vs. 19.8 � 6.2) for P and T, respectively. The present findings indicate that blastocyst development after SCNT does not differ when fetal fibroblasts donor cells are frozen by the two methods tested.


2004 ◽  
Vol 62 (3-4) ◽  
pp. 512-521 ◽  
Author(s):  
Goo Jang ◽  
Eul-Soon Park ◽  
Jong-Ki Cho ◽  
M.M.U Bhuiyan ◽  
Byeong-Chun Lee ◽  
...  

Zygote ◽  
2010 ◽  
Vol 18 (2) ◽  
pp. 93-101 ◽  
Author(s):  
S. Kim ◽  
J.H. Kim ◽  
E. Lee ◽  
Y.W. Jeong ◽  
M.S. Hossein ◽  
...  

SummaryThis study was aimed to establish embryonic stem (ES)-like cells from blastocysts derived from somatic cell nuclear transfer (SCNT) in pig. Somatic cells isolated from both day-30 fetus and neonatal cloned piglet were used for donor cells. A total of 60 blastocysts (46 and 14 derived from fetal and neonatal fibroblast donor cells, respectively) were seeded onto a mitotically inactive mouse embryonic fibroblast (MEF) monolayer and two ES-like cell lines, one from each donor cell type, were established. They remained undifferentiated over more than 52 (fetal fibroblast-derived) and 48 (neonatal fibroblast-derived) passages, while retaining alkaline phosphatase activity and reactivity with ES specific markers Oct-4, stage-specific embryonic antigen-1 (SSEA-1), SSEA-4, TRA-1–60 and TRA-1–81. These ES-like cells maintained normal diploid karyotype throughout subculture and successfully differentiated into embryoid bodies that expressed three germ layer-specific genes (ectoderm: β-III tubulin; endoderm: amylase; and mesoderm: enolase) after culture in leukemia inhibitory factor-free medium. Microsatellite analysis confirmed that they were genetically identical to its donor cells. Combined with gene targeting, our results may contribute to developing an efficient method for producing transgenic pigs for various purposes.


2012 ◽  
Vol 11 (11) ◽  
pp. 1812-1818 ◽  
Author(s):  
He-Ping Li ◽  
Ya-Xin Yao ◽  
Wei-Jun Guan ◽  
Xiang-Chen Li ◽  
Xiao-Hua Su ◽  
...  

2016 ◽  
Vol 30 (4) ◽  
pp. 585-592 ◽  
Author(s):  
Jae-Gyu Yoo ◽  
Byeong-Woo Kim ◽  
Mi-Rung Park ◽  
Deug-Nam Kwon ◽  
Yun-Jung Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document