global dna methylation
Recently Published Documents


TOTAL DOCUMENTS

666
(FIVE YEARS 217)

H-INDEX

50
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ritu Raina ◽  
Abdulmajeed G. Almutary ◽  
Sali Abubaker Bagabir ◽  
Nazia Afroze ◽  
Sharmila Fagoonee ◽  
...  

Purpose: Plant-derived phytochemicals have shown epigenetic modulatory effect in different types of cancer by reversing the pattern of DNA methylation and chromatin modulation, thereby restoring the function of silenced tumor-suppressor genes. In the present study, attempts have been made to explore chrysin-mediated epigenetic alterations in HeLa cells.Methods: Colony formation and migration assays followed by methylation-specific PCR for examining the methylation status of CpG promoters of various tumor-suppressor genes (TSGs) and the expression of these TSGs at the transcript and protein levels were performed. Furthermore, global DNA methylation; biochemical activities of DNA methyltransferases (DNMTs), histone methyl transferases (HMTs), histone deacetylases (HDACs), and histone acetyl transferases (HATs) along with the expression analysis of chromatin-modifying enzymes; and H3 and H4 histone modification marks analyses were performed after chrysin treatment.Results: The experimental analyses revealed that chrysin treatment encourages cytostatic behavior as well as inhibits the migration capacity of HeLa cells in a time- and dose-dependent manner. Chrysin reduces the methylation of various tumor-suppressor genes, leading to their reactivation at mRNA and protein levels. The expression levels of various chromatin-modifying enzymes viz DNMTs, HMTs, HDACs, and HATS were found to be decreased, and H3 and H4 histone modification marks were modulated too. Also, reduced global DNA methylation was observed following the treatment of chrysin.Conclusion: This study concludes that chrysin can be used as a potential epigenetic modifier for cancer treatment and warrants for further experimental validation.


2022 ◽  
pp. 577808
Author(s):  
I.S. Brorson ◽  
A.M. Eriksson ◽  
E. Høgestøl ◽  
I.S. Leikfoss ◽  
H.F. Harbo ◽  
...  

Epigenetics ◽  
2021 ◽  
pp. 1-12
Author(s):  
Fernanda Hernandez-Landero ◽  
Erika Sanchez-Garcia ◽  
Nancy Gomez-Crisostomo ◽  
Adriana Contreras-Paredes ◽  
Martínez Abundis Eduardo ◽  
...  

Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 342
Author(s):  
Vera A. Vokina ◽  
Larisa M. Sosedova ◽  
Mikhail A. Novikov ◽  
Viktor S. Rukavishnikov ◽  
Ekaterina A. Kapustina ◽  
...  

The use of a developed experimental model of a natural fire made it possible to assess the consequences of 24 h exposure to peat combustion products in albino rats. Peat smoke exposure leads to behavioral disturbances in rats, characterized by an increase in locomotor activity and an increased level of anxiety. Indicators of brain bioelectrical activity of the exposed animals supported the state of anxiety and psychoemotional stress. Epigenetic changes in the blood cells of exposed animals were revealed under 24 h exposure to peat smoke, characterized by a decrease in the level of global DNA methylation.


Author(s):  
Martin Fonkoua ◽  
W. Tazon Arnold ◽  
R. Françoise Ntentié ◽  
B. Azantsa Kingue ◽  
G. Takuissu Nguemto ◽  
...  

Aim:  DNA methylation profile is involved in several physiological processes. Its alterations in the liver of diabetic patients characterized by global hypomethylation are associated with the pathophysiology of type 2 diabetes and its complications. The present study has evaluated the effect of the aqueous extract of Alstonia boonei barks on the global methylation of hepatic DNA in association with hyperglycemia and diabetes complications induced by high-fat diet (HFD) feeding and administering of streptozotocin (STZ) which mimics the metabolic abnormalities very similar to those seen in human Type 2 diabetes. Methods: A. boonei barks were harvested, processed, dried, ground and an aqueous extraction was prepared (ratio 1/10 w/v). An in vivo study was conducted in an animal model of high-fat-streptozotocin (HF-STZ) induced diabetes. Rats were divided into five groups of five rats each: a normoglycemic group, an untreated hyperglycemic group, three hyperglycemic groups including two test groups receiving aqueous extract of A. boonei barks (AEAB) by esophageal gavage at the doses of 200 and 400 mg/kg body weight once daily and a reference group receiving metformin at 10 mg/kg body weight. After 28 days of experimentation during which fasting blood glucose levels were taken every 14 days under fasting conditions, the animals were sacrificed. Plasma and liver homogenate samples from the sacrificed rats were used for biochemical assays (markers of oxidative stress such as malondialdehyde level, superoxide dismutase (SOD) and catalase activity, and markers of lipid profile such as total cholesterol, and triglycerides, HDL-c, LDL-c and VLDL-c).  The analysis of the global DNA methylation profile was performed by the immunoprecipitation. Pearson's correlation was used to evaluate the relationship between the values. Results: The aqueous extract increased the hepatic DNA methylation by 0.41% and 0.63% at 200 and 400 mg/kg body weight, respectively, compared to metformin (0.47%±0, 05). This effect was significantly associated with the hypoglycemic effect obtained at 400 mg/kg body weight with a decrease in initial blood glucose level of -29.87%. Conclusion: AEAB reduces chronic hyperglycemia and prevents its complications by increasing global hepatic DNA methylation.


Author(s):  
Fangdie Ye ◽  
Yingchun Liang ◽  
Jimeng Hu ◽  
Yun Hu ◽  
Yufei Liu ◽  
...  

Background: Considering the heterogeneity and complexity of epigenetic regulation in bladder cancer, the underlying mechanisms of global DNA methylation modification in the immune microenvironment must be investigated to predict the prognosis outcomes and clinical response to immunotherapy.Methods: We systematically assessed the DNA methylation modes of 985 integrated bladder cancer samples with the unsupervised clustering algorithm. Subsequently, these DNA methylation modes were analyzed for their correlations with features of the immune microenvironment. The principal analysis algorithm was performed to calculate the DMRscores of each samples for qualification analysis.Findings: Three DNA methylation modes were revealed among 985 bladder cancer samples, and these modes are related to diverse clinical outcomes and several immune microenvironment phenotypes, e.g., immune-desert, immune-inflamed, and immune-excluded ones. Then patients were classified into high- and low-DMRscore subgroups according to the DMRscore, which was calculated based on the expression of DNA methylation related genes (DMRGs). Patients with the low-DMRscore subgroup presented a prominent survival advantage that was significantly correlated to the immune-inflamed phenotype. Further analysis revealed that patients with low DMRscores exhibited less TP53 wild mutation, lower cancer stage and molecular subtypes were mainly papillary subtypes. In addition, an independent immunotherapy cohort confirmed that DMRscore could serve as a signature to predict prognosis outcomes and immune responses.Conclusion: Global DNA methylation modes can be used to predict the immunophenotypes, aggressiveness, and immune responses of bladder cancer. DNA methylation status assessments will strengthen our insights into the features of the immune microenvironment and promote the development of more effective treatment strategies.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1270
Author(s):  
Akifumi Nakata ◽  
Keisuke Sato ◽  
Yohei Fujishima ◽  
Valerie Goh Swee Ting ◽  
Kanade Nakayama ◽  
...  

The intergenerational effects from chronic low-dose exposure are matters of concern. It is thus important to elucidate the radiation-induced effects of germ cell maturation, fertilization and embryonic development. It is well known that DNA methylation levels in CpG sites in gametes are reprogrammed in stages during their maturity. Furthermore, the binding of Izumo on the surface of sperm and Juno on the surface of oocytes is essential for fertilization. Thus, there is a possibility that these genes are useful indicators to evaluate fertility in mice after irradiation exposure. Therefore, in this study, we analyzed global DNA methylation patterns in the testes and gene expression of Izumo1 and Izumo1r (Juno) in the gonads of mice after neonatal acute high-dose ionizing radiation (HDR) and chronic low-dose ionizing radiation (LDR). One-week-old male and female mice were irradiated with a total dose of 4 Gy, with acute HDR at 7 days at a dose rate of 30 Gy/h and LDR continuously at a dose rate of 6 mGy/h from 7 to 35 days. Their gonads were subsequently analyzed. The results of global DNA methylation patterns in the testes showed that methylation level increased with age in the control group, the LDR group maintained its DNA methylation level, and the HDR group showed decreased DNA methylation levels with age. In the control group, the gene expression level of Izumo1 in the testis did not show age-related changes, although there was high expression at 100 days of age. However, in the LDR group, the expression level recovered after the end of irradiation, while it remained low regardless of age in the HDR group. Conversely, gene expression of Izumo1r (Izumo1 receptor) in the ovary decreased with age in the control group. Although the gene expression of Izumo1r decreased with age in the LDR group, it remained low in the HDR group. Our results indicate that LDR can induce different DNA methylation patterns, and both high- and low-dose radiation before sexual maturity might affect gametogenesis and fertility.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260860
Author(s):  
Suniti Yadav ◽  
Imnameren Longkumer ◽  
Priyanka Rani Garg ◽  
Shipra Joshi ◽  
Sunanda Rajkumari ◽  
...  

Background Anthropogenic air pollution has been implicated in aberrant changes of DNA methylation and homocysteine increase (>15μM/L). Folate (<3 ng/mL) and vitamin B12 (<220 pg/mL) deficiencies also reduce global DNA methylation via homocysteine increase. Although B-vitamin supplements can attenuate epigenetic effects of air pollution but such understanding in population-specific studies are lacking. Hence, the present study aims to understand the role of air pollution, homocysteine, and nutritional deficiencies on methylation. Methods We examined cross-sectionally, homocysteine, folate, vitamin B12 (chemiluminescence) and global DNA methylation (colorimetric ELISA Assay) among 274 and 270 individuals from low- and high- polluted areas, respectively, from a single Mendelian population. Global DNA methylation results were obtained on 254 and 258 samples from low- and high- polluted areas, respectively. Results Significant decline in median global DNA methylation was seen as a result of air pollution [high-0.84 (0.37–1.97) vs. low-0.96 (0.45–2.75), p = 0.01]. High homocysteine in combination with air pollution significantly reduced global DNA methylation [high-0.71 (0.34–1.90) vs. low-0.93 (0.45–3.00), p = 0.003]. Folate deficient individuals in high polluted areas [high-0.70 (0.37–1.29) vs. low-1.21 (0.45–3.65)] showed significantly reduced global methylation levels (p = 0.007). In low polluted areas, despite folate deficiency, if normal vitamin B12 levels were maintained, global DNA methylation levels improved significantly [2.03 (0.60–5.24), p = 0.007]. Conversely, in high polluted areas despite vitamin B12 deficiency, if normal folate status was maintained, global DNA methylation status improved significantly [0.91 (0.36–1.63)] compared to vitamin B12 normal individuals [0.54 (0.26–1.13), p = 0.04]. Conclusions High homocysteine may aggravate the effects of air pollution on DNA methylation. Vitamin B12 in low-polluted and folate in high-polluted areas may be strong determinants for changes in DNA methylation levels. The effect of air pollution on methylation levels may be reduced through inclusion of dietary or supplemented B-vitamins. This may serve as public level approach in natural settings to prevent metabolic adversities at community level.


Sign in / Sign up

Export Citation Format

Share Document