Post-fire epicormic branching in Sierra Nevada Abies concolor (white fir)

2006 ◽  
Vol 15 (1) ◽  
pp. 31 ◽  
Author(s):  
Chad T. Hanson ◽  
Malcolm P. North

In California’s mixed-conifer forest, which historically had a regime of frequent fires, two conifers, Sequoiadendron giganteum and Pseudotsuga menziesii, were previously known to produce epicormic sprouts from branches. We found epicormic branching in a third mixed-conifer species, Abies concolor, 3 and 4 years after a wildfire in the central Sierra Nevada Mountains of California. Sprouting occurred only from the boles. We investigated (1) whether the degree of crown loss and the extent of epicormic branching were independent; and (2) whether epicormic branching differed by tree size. The vertical extent of epicormic foliage increased with increasing severity of crown loss. There was a significantly greater proportion of large diameter-class (>50 cm diameter at breast height [dbh]) trees with epicormic branching than small/medium diameter-class (25–50 cm dbh) trees. These results suggest large diameter Abies concolor may survive high levels of crown loss, aided by crown replacement through epicormic branching, but that reiterative green foliage may not appear for up to 3 years after fire damage. If this response is widespread, it would suggest some ‘dying’ trees logged under current salvage guidelines could survive, and that higher-intensity fire may substantially reduce the density of small post-fire suppression white fir, while retaining many larger overstory trees.

2006 ◽  
Vol 36 (12) ◽  
pp. 3222-3238 ◽  
Author(s):  
Leda Kobziar ◽  
Jason Moghaddas ◽  
Scott L Stephens

During the late fall of 2002 we administered three burns in mixed conifer forest sites in the north-central Sierra Nevada. Eight months later we measured fire-induced injury and mortality in 1300 trees. Using logistic regression, an array of crown scorch, stem damage, fuels, and fire-behavior variables were examined for their influence on tree mortality. In Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), white fir (Abies concolor (Gord. & Glend.) Lindl.), and incense cedar (Calocedrus decurrens (Torr.) Florin), smaller trees with greater total crown damage had higher mortality rates. Smaller stem diameters and denser canopies predicted mortality best in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws). Duff consumption and bark char severity increased model discrimination for white fir and incense cedar and California black oak (Quercus kelloggii Newberry), respectively. In tanoak (Lithocarpus densiflorus (Hook. & Arn.) Rehd.), greater total crown damage in shorter trees resulted in higher mortality rates. Along with tree diameter and consumption of large (>7.6 cm diameter at breast height, DBH) rotten downed woody debris, fire intensity was a significant predictor of overall tree mortality for all species. Mortality patterns for white fir in relation to crown damage were similar among sites, while those for incense cedar were not, which suggests that species in replicated sites responded differently to similar burns. Our results demonstrate actual fire-behavior data incorporated into mortality models, and can be used to design prescribed burns for targeted reduction of tree density in mixed conifer forests.


2016 ◽  
Vol 46 (5) ◽  
pp. 745-752 ◽  
Author(s):  
Carrie R. Levine ◽  
Flora Krivak-Tetley ◽  
Natalie S. van Doorn ◽  
Jolie-Anne S. Ansley ◽  
John J. Battles

In the western United States, forests are experiencing novel environmental conditions related to a changing climate and a suppression of the historical fire regime. Mixed-conifer forests, considered resilient to disturbance due to their heterogeneity in structure and composition, appear to be shifting to a more homogeneous state, but the timescale of these shifts is not well understood. Our objective was to assess the effects of climate and fire suppression on stand dynamics and demographic rates of an old-growth mixed-conifer forest in the Sierra Nevada. We used a Bayesian hierarchical analysis to quantify species and community rates of recruitment, growth, and mortality. Despite a warming climate, we found that stand density, basal area, and carbon have increased over 56 years. Fir recruitment and growth significantly exceeded the community-level median rates, whereas pine recruitment and growth was significantly lower than the community-level median rates. Shifts in species composition from a well-mixed stand to a more dense fir-dominated stand appear to be driven by low growth and recruitment rates of pines relative to firs. In forests such as these with consistent and relatively low mortality rates, we recommend that restoration and management activities be focused on promoting pine recruitment and growth.


Sign in / Sign up

Export Citation Format

Share Document