Fire Ecology
Latest Publications


TOTAL DOCUMENTS

438
(FIVE YEARS 106)

H-INDEX

33
(FIVE YEARS 7)

Published By Springer (Biomed Central Ltd.)

1933-9747

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Willem A. Nieman ◽  
Brian W. van Wilgen ◽  
Alison J. Leslie

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Quresh S. Latif ◽  
Victoria A. Saab ◽  
Jonathan G. Dudley

Abstract Background Fire suppression and anthropogenic land use have increased severity of wildfire in western U.S. dry conifer forests. Managers use fuels reduction methods (e.g., prescribed fire) to limit high-severity wildfire and restore ecological function to these fire-adapted forests. Many avian species that evolved in these forests, however, are adapted to conditions created by high-severity wildfire. To fully understand the ecological implications of fuels reduction treatments, we need to understand direct treatment effects and how treatments modulate subsequent wildfire effects on natural communities. We studied bird population and community patterns over nine years at six study units, including unburned (2002–2003), after prescribed fire (2004–2007), and after wildfire (2008–2010). We used a before-after, control-impact (BACI) approach to analyze shifts in species occupancy and richness in treated units following prescribed fire and again in relation to burn severity following wildfire. Results We found examples of both positive and negative effects of wildfire and prescribed fire on bird species occupancy depending on and largely consistent with their life history traits; several woodpecker species, secondary cavity-nesting species, aerial insectivores, and understory species exhibited positive effects, whereas open cup canopy-nesting species and foliage- or bark-gleaning insectivores exhibited negative effects. Wildfire affected more species more consistently through time than did prescribed fire. Wildfire burned units initially treated with prescribed fire less severely than untreated units, but the slopes of wildfire effects on species occupancy were similar regardless of prior prescribed fire treatment. Conclusions Our results suggest managers can employ prescribed fire to reduce wildfire severity without necessarily altering the ecological importance of wildfire to birds (i.e., the identity of species exhibiting negative versus positive responses). Additional study of the ecological implications of various fuels reduction practices, representing a range of intensities and fire regimes, would further inform forest management that includes biodiversity objectives.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Claire E. Rapp ◽  
Robyn S. Wilson ◽  
Eric L. Toman ◽  
W. Matt Jolly

Abstract Background Weather plays an integral role in fire management due to the direct and indirect effects it has on fire behavior. However, fire managers may not use all information available to them during the decision-making process, instead utilizing mental shortcuts that can bias decision-making. Thus, it is important to evaluate if (and how) fire managers use information like weather forecasts when making tactical decisions. We explore USDA Forest Service fire manager confidence in relative humidity, precipitation, and wind models. We then use a choice experiment where key weather attributes were varied to explore how sensitive fire managers were to changes in specific weather variables when choosing to directly or indirectly attack a fire that is transitioning to extended attack. Results Respondents were less confident in the accuracy of wind and precipitation forecasts than relative humidity or weather forecasts more generally. The influence of weather information on the decision depended on the framing used in the choice experiment; specifically, whether respondents were told the initial strategy had been to directly or indirectly attack the fire. Across conditions, fire managers generally preferred to indirectly attack the fire. Decisions about the tactics to apply going forward were more sensitive to time in season when the fire was occurring and wind and precipitation forecasts than to other attributes. Conclusions The results have implications for the design of decision support tools developed to support fire management. Results suggest how fire managers’ use of fire weather information to evaluate forecast conditions and adjust future management decisions may vary depending on the management decision already in place. If fire weather-based decision support tools are to support the use of the best available information to make fire management decisions, careful attention may be needed to debias any effect of prior decisions. For example, decision support tools may encourage users to “consider the opposite,” i.e., consider if they would react differently if different initial decision with similar conditions were in place. The results also highlight the potential importance of either improving wind and precipitation forecast models or improving confidence in existing models.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Kate Wilkin ◽  
Lauren Ponisio ◽  
Danny L. Fry ◽  
Brandon M. Collins ◽  
Tadashi Moody ◽  
...  

Abstract Background Fire suppression in western North America increased and homogenized overstory cover in conifer forests, which likely affected understory plant communities. We sought to characterize understory plant communities and their drivers using plot-based observations from two contemporary reference sites in the Sierra Nevada, USA. These sites had long-established natural fire programs, which have resulted in restored natural fire regimes. In this study, we investigated how pyrodiversity—the diversity of fire size, severity, season, and frequency—and other environment factors influenced species composition and cover of forest understory plant communities. Results Understory plant communities were influenced by a combination of environmental, plot-scale recent fire history, and plot-neighborhood pyrodiversity within 50 m. Canopy cover was inversely proportional to understory plant cover, Simpson’s diversity, and evenness. Species richness was strongly influenced by the interaction of plot-based fire experience and plot-neighborhood pyrodiversity within 50 m. Conclusions Pyrodiversity appears to contribute both directly and indirectly to diverse understory plant communities in Sierra Nevada mixed conifer forests. The indirect influence is mediated through variability in tree canopy cover, which is partially related to variation in fire severity, while direct influence is an interaction between local and neighborhood fire activity.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Robert A. York ◽  
Jacob Levine ◽  
Kane Russell ◽  
Joseph Restaino

Abstract Background Young, planted forests are particularly vulnerable to wildfire. High severity effects in planted forests translate to the loss of previous reforestation investments and the loss of future ecosystem service gains. We conducted prescribed burns in three ~35-year-old mixed conifer plantations that had previously been masticated and thinned during February in order to demonstrate the effectiveness of winter burning, which is not common in the Sierra Nevada, California. Results On average, 59% of fine fuels were consumed and the fires reduced shrub cover by 94%. The average percent of crown volume that was damaged was 25%, with no mortality observed in overstory trees 1 year following the fires. A plot level analysis of the factors of fire effects did not find strong predictors of fuel consumption. Shrub cover was reduced dramatically, regardless of the specific structure that existed in plots. We found a positive relationship between crown damage and the two variables of Pinus ponderosa relative basal area and shrub cover. But these were not particularly strong predictors. An analysis of the weather conditions that have occurred at this site over the past 20 years indicated that there have consistently been opportunities to conduct winter burns. On average, 12 days per winter were feasible for burning using our criteria. Windows of time are short, typically 1 or 2 days, and may occur at any time during the winter season. Conclusions This study demonstrates that winter burning can be an important piece of broader strategies to reduce wildfire severity in the Sierra Nevada. Preparing forest structures so that they can be more feasible to burn and also preparing burn programs so that they can be nimble enough to burn opportunistically during short windows are key strategies. Both small landowners and large agencies may be able to explore winter burning opportunities to reduce wildfire severity.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Christine A. Schlesinger ◽  
Erin L. Westerhuis

Abstract Background Large old trees are keystone structures of terrestrial ecosystems that provide unique habitat resources for wildlife. Their widespread decline worldwide has serious implications for biodiversity and ecosystem integrity. In arid regions, large trees are relatively uncommon and often restricted to areas with elevated soil moisture and nutrients. Introduced grasses, now pervasive in many dryland environments, also thrive in such areas and are promoting more frequent and intense fire, potentially threatening the persistence of large trees. Here we report on the impact of a single wildfire on large river red gums (Eucalyptus camaldulensis Dehnh.) in arid riparian woodland invaded by buffel grass (Cenchrus ciliaris L.), a serious invader of desert ecosystems worldwide. In 2018, 266 trees with > 80 cm equivalent trunk diameter were mapped at six sites to provide a ‘pre-fire’ baseline. Within a year, the sites were impacted by a large, unprecedented wildfire that burnt an area of 660 km2 ha in 15 days. Sites were resurveyed in February 2019 to assess the fate of the trees. Reference to fire severity, calculated from remote-sensed imagery, is provided for additional context. Results In total, 67 trees, 27% of all large trees at the sites were destroyed. If trees in unburnt patches are excluded, 54% of trees exposed to the fire were destroyed and the remainder lost on average 79% of their canopy. Conclusions This severe detrimental effect of a single fire, on trees estimated to be centuries old, is indicative of tree-loss occurring across remote arid Australia in habitats where fire is now fuelled predominantly by invasive grasses. Large volumes of novel grass fuels along creeklines in combination with extreme weather events were major factors driving the spread, extent and impacts of the wildfire we report on and are causing a shift from relatively uncommon and predictable, rainfall-dependent large wildfires to large, severe fires that can occur anytime. We predict further decline in the abundance of large trees from similar fires will occur widely throughout arid Australia over the next decade with substantial long-term impacts on multiple species. New strategies are urgently required to manage fire in invaded arid ecosystems to better protect large trees and the critical resources they provide.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Brittany Harris ◽  
Ariel Freidenreich ◽  
Eric Betancourt ◽  
Krishnaswarmy Jayachandran

Abstract Background Preserving fire-dependent ecosystems can mitigate biodiversity loss from urbanization, but prescribing fire is challenging near human habitation. Consequently, dereliction of fire-dependent forests is widespread in urban fragments. Natural disturbance-based management, like prescribing fire, is gaining global acceptance, yet it is unclear what affects prolonged exclusion have on the initial regeneration of isolated plant communities immediately after fire is reintroduced. We took advantage of the first prescribed low-intensity burn on a university pine rockland nature preserve in South Florida, USA, to gain insight. We measured the changes in plant community composition and vegetation cover 1 week before the prescribed burn, and again 1, 2, and 14 weeks after to assess the early and short-term stages of recovery. Results The fire consumed substantial leaf litter, surface fuels, and canopy leaves, increasing sunlight availability to the understory and exposing bare ground. Many woody plants perished within a week post-burn, particularly invasive shrubs; however, germinating and resprouting plant growth were rapid. By 14 weeks, vegetation covered more of the ground than before the burn, although the upper canopy remained relatively open. Rarefied species richness was recovered by 14 weeks but did not exceed pre-burn levels. Invasive species richness was also maintained post-burn. Despite no overall changes in the community structure, our correspondence analysis and analysis of similarity of the plant community suggest high species turnover from the pre-burn to the final community surveyed, with an intermediate turnover in between. Conclusion The endangered pine rockland ecosystem, like many fire-dependent ecosystems, is threatened by habitat loss and fire suppression. Managing urban preserves with periodic burns is essential for supporting habitat for endemic species while decreasing demands for manual and time-intensive maintenance. Our study demonstrates that seedling recruitment from early plantings of native species can contribute significantly and immediately to restoration efforts in a fire-excluded urban preserve; however, many changes were ephemeral. Supplemental burns are likely necessary to further reduce vegetation density and sustain changes to the community composition.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Damon B. Lesmeister ◽  
Raymond J. Davis ◽  
Stan G. Sovern ◽  
Zhiqiang Yang

Abstract Background The northern spotted owl (Strix occidentalis caurina) is an Endangered Species Act-listed subspecies that requires coniferous forests with structurally complex and closed-canopy old-growth characteristics for nesting. With climate change, large wildfires are expected to become more common within the subspecies’ range and an increasing threat to these types of forests. Understanding fire severity patterns related to suitable nesting forest will be important to inform forest management that affects conservation and recovery. We examined the relationship between fire severity and suitable nesting forest in 472 large wildfires (> 200 ha) that occurred in the northern spotted owl range during 1987–2017. We mapped fire severities (unburned-low, moderate, high) within each fire using relative differenced normalized burn ratios and quantified differences in severity between pre-fire suitable nesting forest (edge and interior) and non-nesting forest. We also quantified these relationships within areas of three fire regimes (low severity, very frequent; mixed severity, frequent; high severity, infrequent). Results Averaged over all fires, the interior nesting forest burned at lower severity than edge or non-nesting forest. These relationships were consistent within the low severity, very frequent, and mixed severity, frequent fire regime areas. All forest types burned at similar severity within the high severity, infrequent fire regime. During two of the most active wildfire years that also had the largest wildfires occurring in rare and extreme weather conditions, we found a bimodal distribution of fire severity in all forest types. In those years, a higher amount—and proportion—of all forest types burned at high severity. Over the 30-year study, we found a strong positive trend in the proportion of wildfires that burned at high severity in the non-nesting forests, but not in the suitable nesting forest types. Conclusions Under most wildfire conditions, the microclimate of interior patches of suitable nesting forests likely mitigated fire severity and thus functioned as fire refugia (i.e., burning at lower severity than the surrounding landscape). With changing climate, the future of interior forest as fire refugia is unknown, but trends suggest older forests can dampen the effect of increased wildfire activity and be an important component of landscapes with fire resiliency.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Susan C. Loeb ◽  
Rachel V. Blakey

Abstract Background Bats are important components of forested ecosystems and are found in forests worldwide. Consequently, they often interact with fire. Previous reviews of the effects of fire on bats have focused on prescribed fire effects, in part due to the limited number of studies on bat responses to wildfire. However, over the past several years, studies on bat responses to wildfire and prescribed fire have increased considerably. We reviewed this rapidly expanding body of literature to determine whether bats respond differently to prescribed fire and wildfire, and the important factors driving those differences. We also examined regional similarities and differences in bat response to prescribed fire and wildfire and identified areas in need of further research. Results Our review included 52 studies (29 prescribed fire, 23 wildfire) from North and South America, Europe, Australia, and Africa, although studies from Europe, South America, and Africa were limited. In general, we found that bats show positive or neutral responses to prescribed fire, whereas a greater proportion of negative responses were reported for wildfire. However, some of the negative responses to wildfire are short-lived or local, suggesting that bats may be resilient to the effects of fire. Factors such as fire severity, fire frequency, time since last burn, burn extent, season of burn, and pyrodiversity were all found to be important drivers of bats’ responses to both prescribed fire and wildfire. Conclusions The importance of the spatial and temporal aspects of fire suggests that these factors need to be considered when designing future studies and interpreting results. Pyrodiversity may be a particularly important concept to further our understanding of bats’ responses to fire. We found several gaps in our knowledge including lack of information on direct effects of fire (e.g., mortality), regional and taxonomic biases, effects of wildfire on roosting habitat, and the effects of climate change. Although current studies suggest that fire may be an important management tool for improving bat habitat, the threat of more frequent, extensive, and severe wildfires may put additional stress on some bat populations, particularly those being impacted by disease, habitat loss and fragmentation, and climate change.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Ashley Grupenhoff ◽  
Nicole Molinari

Abstract Background Shrub-dominated ecosystems in California are widespread and provide invaluable ecosystem services to surrounding human-dominated communities. Yet shrublands, especially those at the wildland-urban interface, are at risk of degradation due to increasing wildfire frequency. Strategically placed fuel breaks are an important fuel management technique for reducing fire risk to neighboring communities and natural landscapes. Fuel breaks in shrub-dominated ecosystems are typically linear features where woody biomass is reduced, thereby providing fire suppression opportunities that limit fire spread. While fuel breaks are important for tactical response to fire, they can also affect the composition and structure of shrubland habitats. To understand the ecological changes resulting from fuel treatments in southern California chaparral, we measured vegetation change associated with fuel management techniques on a recently created fuel break established around the Lake Morena community on the Cleveland National Forest. The area was initially treated with cut and pile burning, then treated with herbicide, and 2 years later was subjected to short-term grazing by 1200 goats. The purpose of this study is to (1) evaluate the compositional and structural differences associated with fuel break creation and (2) quantify compositional shifts in herbaceous and woody vegetation caused by short-duration goat grazing as a method of fuel break maintenance. Results Plots on the fuel break and in untreated adjacent chaparral exhibited significantly different species assemblages. Total herbaceous cover (both native and non-native) was 92 times greater on the fuel break than in adjacent chaparral-dominated wildlands, and native shrub cover was 55.3 times greater in untreated adjacent chaparral than on the fuel break. Goats had a significant impact on reducing native and non-native herbaceous cover (87% reduction in cover, 92% reduction in height), but were ineffective at reducing the cover and height of most woody species such as Adenostoma fasciculatum, Eriogonum fasciculatum, Quercus berberidifolia, and Artemisia tridentata. Conclusion Initial fuel break creation was effective at reducing native woody cover and height, simultaneously giving rise to an abundance and diversity of native and non-native herbaceous species. Targeted goat grazing was successful at reducing herbaceous biomass but was ineffective at reducing woody biomass which is often one of the most important goals for fuel management in chaparral ecosystems. In areas where control of woody biomass is the primary objective, land managers should consider grazing duration and plant species composition when contemplating goats as a tool for fuel break maintenance.


Sign in / Sign up

Export Citation Format

Share Document