Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA

2008 ◽  
Vol 17 (1) ◽  
pp. 96 ◽  
Author(s):  
R. S. Anderson ◽  
C. D. Allen ◽  
J. L. Toney ◽  
R. B. Jass ◽  
A. N. Bair

Our understanding of the present forest structure of western North America hinges on our ability to determine antecedent forest conditions. Sedimentary records from lakes and bogs in the southern Rocky Mountains of Colorado and New Mexico provide information on the relationships between climate and vegetation change, and fire history since deglaciation. We present a new pollen record from Hunters Lake (Colorado) as an example of a high-elevation vegetation history from the southern Rockies. We then present a series of six sedimentary records from ~2600 to 3500-m elevation, including sites presently at the alpine–subalpine boundary, within the Picea engelmannii–Abies lasiocarpa forest and within the mixed conifer forest, to determine the history of fire in high-elevation forests there. High Artemisia and low but increasing percentages of Picea and Pinus suggest vegetation prior to 13 500 calendar years before present (cal yr BP) was tundra or steppe, with open spruce woodland to ~11 900 cal yr BP. Subalpine forest (Picea engelmannii, Abies lasiocarpa) existed around the lake for the remainder of the Holocene. At lower elevations, Pinus ponderosa and/or contorta expanded 11 900 to 10 200 cal yr BP; mixed conifer forest expanded ~8600 to 4700 cal yr BP; and Pinus edulis expanded after ~4700 cal yr BP. Sediments from lake sites near the alpine–subalpine transition contained five times less charcoal than those entirely within subalpine forests, and 40 times less than bog sites within mixed conifer forest. Higher fire episode frequencies occurred between ~12 000 and 9000 cal yr BP (associated with the initiation or expansion of south-west monsoon and abundant lightning, and significant biomass during vegetation turnover) and at ~2000–1000 cal yr BP (related to periodic droughts during the long-term trend towards wetter conditions and greater biomass). Fire episode frequencies for subalpine–alpine transition and subalpine sites were on average 5 to 10 fire events/1000 years over the Holocene, corresponding to one fire event every ~100 to 200 years. (5) Our Holocene-length sedimentary charcoal records provide additional evidence for the anomalous nature of the 20th-century fire regime, where fires were largely suppressed as a national policy.

2008 ◽  
Vol 69 (2) ◽  
pp. 263-275 ◽  
Author(s):  
R. Scott Anderson ◽  
Renata B. Jass ◽  
Jaime L. Toney ◽  
Craig D. Allen ◽  
Luz M. Cisneros-Dozal ◽  
...  

Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. AnArtemisiasteppe, then an openPiceawoodland grew around a small pond until ca. 11,700 cal yr BP whenPinus ponderosabecame established. C/N ratios,δ13C andδ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.


1997 ◽  
Vol 1 (2) ◽  
pp. 325-332 ◽  
Author(s):  
C. A. Troendle ◽  
J. O. Reuss

Abstract. This paper compares of snowpack accumulation and ablation, evapotranspiration, and water outflow from clearcut and forested plots within a high elevation (2900 m) mixed conifer forest at the Fraser Experimental Forest near Fraser, Colorado, USA. Also presented is a method for defining contributing area where outflow is measured from unbounded plots. Plots were monitored from 1980 to 1990 and again in 1993. The clearcut plot was harvested in late 1984. Evapotranspiration (ET) of the forested plot at zero discharge (ETo) was estimated at 426 mm while the ET was 500 mm at the mean precipitation of 596 mm. ET was dependent on precipitation with about 28% of precipitation input in excess of 426 mm contributing to increased ET, while the remainder contributed to increased outflow. During the six monitored post-harvest years, Peak Water Equivalent of the snowpack averaged 36% higher on the cut plot than on the control, and the mean discharge increased from 85 mm to 356 mm. Area estimates were obtained from the slopes of the regression of outflow on precipitation inputs. Hydrologic parameters corresponded closely to those previously determined at Fraser Experimental Forest using other methods, lending credence to the validity of the area estimates.


2019 ◽  
Vol 79 (4) ◽  
pp. 481
Author(s):  
Elizah Z. Stephens ◽  
Christopher P. Murar ◽  
Daniel B. Tinker ◽  
Paige E. Copenhaver-Parry

2010 ◽  
Vol 259 (5) ◽  
pp. 904-915 ◽  
Author(s):  
Siyan Ma ◽  
Amy Concilio ◽  
Brian Oakley ◽  
Malcolm North ◽  
Jiquan Chen

2005 ◽  
Vol 71 (5) ◽  
pp. 2713-2722 ◽  
Author(s):  
Chris M. Yeager ◽  
Diana E. Northup ◽  
Christy C. Grow ◽  
Susan M. Barns ◽  
Cheryl R. Kuske

ABSTRACT This study was undertaken to examine the effects of forest fire on two important groups of N-cycling bacteria in soil, the nitrogen-fixing and ammonia-oxidizing bacteria. Sequence and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and amoA PCR amplicons was performed on DNA samples from unburned, moderately burned, and severely burned soils of a mixed conifer forest. PCR results indicated that the soil biomass and proportion of nitrogen-fixing and ammonia-oxidizing species was less in soil from the fire-impacted sites than from the unburned sites. The number of dominant nifH sequence types was greater in fire-impacted soils, and nifH sequences that were most closely related to those from the spore-forming taxa Clostridium and Paenibacillus were more abundant in the burned soils. In T-RFLP patterns of the ammonia-oxidizing community, terminal restriction fragments (TRFs) representing amoA cluster 1, 2, or 4 Nitrosospira spp. were dominant (80 to 90%) in unburned soils, while TRFs representing amoA cluster 3A Nitrosospira spp. dominated (65 to 95%) in fire-impacted soils. The dominance of amoA cluster 3A Nitrosospira spp. sequence types was positively correlated with soil pH (5.6 to 7.5) and NH3-N levels (0.002 to 0.976 ppm), both of which were higher in burned soils. The decreased microbial biomass and shift in nitrogen-fixing and ammonia-oxidizing communities were still evident in fire-impacted soils collected 14 months after the fire.


Sign in / Sign up

Export Citation Format

Share Document