Fire emission uncertainties and their effect on smoke dispersion predictions: a case study at Eglin Air Force Base, Florida, USA

2015 ◽  
Vol 24 (2) ◽  
pp. 276 ◽  
Author(s):  
Aika Y. Davis ◽  
Roger Ottmar ◽  
Yongqiang Liu ◽  
Scott Goodrick ◽  
Gary Achtemeier ◽  
...  

Prescribed burning is practiced to benefit ecosystems but the resulting emissions can adversely affect air quality. A better understanding of the uncertainties in emission estimates and how these uncertainties affect smoke predictions is critical for model-based decision making. This study examined uncertainties associated with estimating fire emissions and how they affected smoke concentrations downwind from a prescribed burn that was conducted at Eglin Air Force Base in Florida, US. Estimated variables used in the modelled emission calculation were compared with field measurements. Fuel loadings, fuel consumption and emission factors were simulated using Photo Series, Consume, and previously published values. A plume dispersion model was used to study the effect of uncertainty in emissions on ground concentration prediction. The fire emission models predicted fuel loading, fuel consumption and emission factor within 15% of measurements. Approximately 18% uncertainty in field measurements of PM2.5 emissions and 36% uncertainty attributed to variability in emission estimating models resulted respectively in 20% and 42% ground level PM2.5 concentration uncertainties in dispersion modelling using Daysmoke. Uncertainty in input emissions influences the concentrations predicted by the smoke dispersion model to the same degree as does the model’s inherent uncertainty due to turbulence.

1994 ◽  
Author(s):  
William A. Shaffer ◽  
Marc R. Surette ◽  
Martin M. McHugh ◽  
Michael T. Eismann ◽  
J. R. Maxwell

1986 ◽  
Vol 62 (2) ◽  
pp. 96-100 ◽  
Author(s):  
D. J. McRae

Recent spruce budworm (Choristoneura fumiferana [Clem.]) infestations have resulted in widespread areas of balsam fir (Abies balsamea [L.] Mill.) mortality in Ontario, and there is growing interest in reestablishing these areas quickly as productive forests. One technique being used is prescribed fire after a salvage and bulldozer tramping operation. A 445-ha prescribed burn was carried out under moderate fire danger conditions in northern Ontario. The site, which was covered by balsam fir fuel that had been killed by spruce budworm, was tramped to improve fire spread. Weather, fuel consumption, and fire effects are reported. The burn effectively reduced heavy surface fuel loadings and consequently planting on the site was easier. Key words: Prescribed burning, fire, spruce budworm. Choristoneura fumiferana, balsam fir, Abies balsamea, fuel consumption, site preparation, tramping, stand conversion.


2004 ◽  
Vol 13 (2) ◽  
pp. 217 ◽  
Author(s):  
A. I. Miranda

Forest fires are an important source of various gases and particles emitted into the atmosphere that may affect the air quality on a local and/or larger scale. Currently, there is a growing awareness that smoke from wildland fires exposes individuals and populations to hazardous air pollutants. In order to understand and to simulate forest fire effects on air quality, several issues should be analysed and integrated: fire progression, fire emissions, atmospheric flow, smoke dispersion and chemical reactions. In spite of the available models to simulate smoke dispersion and the existence of some systems already covering the main questions, there still remains a lack of integration concerning fire progression. Photochemical pollution is also not included in these modelling systems. AIRFIRE is a numerical system, developed to estimate the effects of forest fires on air quality, integrating several components of the problem through the inclusion of different modules, namely the mesoscale meteorological model MEMO, the photochemical model MARS, and the Rothermel fire spread model. The system was applied to simulate plume dispersion from a wildfire that occurred in a coastal area, close to Lisbon city, at the end of September 1991. Results, namely the obtained pollutants concentration fields, point to a significant impact on the local air quality. Obtained wind fields and concentration patterns revealed the presence of sea breezes and also the influence of the fire in the atmospheric flow. Estimated carbon monoxide concentration levels were very high, exceeding the recommended hourly limit value of the World Health Organization, and ozone concentration values pointed to photochemical production.


1999 ◽  
Vol 14 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Dayna M. Ayers ◽  
Donald J. Bedunah ◽  
Michael G. Harrington

Abstract In many western Montana ponderosa pine (Pinus ponderosa) stands, fire suppression and past selective logging of large trees have resulted in conditions favoring succession to dense stands of shade-tolerant, but insect- and disease-prone Douglas-fir (Pseudotsuga menziesii). Stand thinning and understory prescribed burning have been proposed as surrogates for pre-Euro-American settlement ecological processes and as potential treatments to improve declining forest condition and reduce the probability of severe wildfire. To test the effectiveness of these silvicultural techniques on overstory and understory conditions, research is ongoing in the Lick Creek Demonstration Site in the Bitterroot National Forest, Montana. Our research examined the response (mortality and vigor) of the dominant browse species, antelope bitterbrush (Purshia tridentata) and Scouler's willow (Salix scouleriana), to a ponderosa pine stand restoration project utilizing four treatments: (1) a shelterwood cut that removed 53% of the tree basal area; (2) a shelterwood cut with a low fuel consumption burn; (3) a shelterwood cut with a high fuel consumption burn; and (4) a control. Prior to the application of treatments, 1,856 bitterbrush and 871 willow were located, and their survival and vigor subsequently monitored for 2 yr posttreatment. The cut and burn treatments resulted in the greatest reduction in antelope bitterbrush and Scouler's willow density averaging 66% and 24% of pretreatment density, respectively. The shelterwood cut reduced bitterbrush and Scouler's willow density by 35% and 14%, respectively. On treatments receiving a shelterwood cut (all treatments but the control), but where antelope bitterbrush and Scouler's willow did not have fire damage, mortality was 45% for bitterbrush and 20% for willow, respectively. For bitterbrush and Scouler's willow plants that received fire damage, mortality was 72% for bitterbrush and 19% for willow. Although the burn and shelterwood harvest treatments resulted in reduced density of antelope bitterbrush and Scouler's willow 2 yr posttreatment, these treatments increased vigor of both species and created mineral seedbeds that may be necessary for establishment of seedlings. West. J. Appl. For. 14(3):137-143.


Sign in / Sign up

Export Citation Format

Share Document