fire emissions
Recently Published Documents


TOTAL DOCUMENTS

553
(FIVE YEARS 178)

H-INDEX

65
(FIVE YEARS 8)

2022 ◽  
Vol 15 (1) ◽  
pp. 219-249
Author(s):  
Mahtab Majdzadeh ◽  
Craig A. Stroud ◽  
Christopher Sioris ◽  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  
...  

Abstract. The photolysis module in Environment and Climate Change Canada's online chemical transport model GEM-MACH (GEM: Global Environmental Multi-scale – MACH: Modelling Air quality and Chemistry) was improved to make use of the online size and composition-resolved representation of atmospheric aerosols and relative humidity in GEM-MACH, to account for aerosol attenuation of radiation in the photolysis calculation. We coupled both the GEM-MACH aerosol module and the MESSy-JVAL (Modular Earth Submodel System) photolysis module, through the use of the online aerosol modeled data and a new Mie lookup table for the model-generated extinction efficiency, absorption and scattering cross sections of each aerosol type. The new algorithm applies a lensing correction factor to the black carbon absorption efficiency (core-shell parameterization) and calculates the scattering and absorption optical depth and asymmetry factor of black carbon, sea salt, dust and other internally mixed components. We carried out a series of simulations with the improved version of MESSy-JVAL and wildfire emission inputs from the Canadian Forest Fire Emissions Prediction System (CFFEPS) for 2 months, compared the model aerosol optical depth (AOD) output to the previous version of MESSy-JVAL, satellite data, ground-based measurements and reanalysis products, and evaluated the effects of AOD calculations and the interactive aerosol feedback on the performance of the GEM-MACH model. The comparison of the improved version of MESSy-JVAL with the previous version showed significant improvements in the model performance with the implementation of the new photolysis module and with adopting the online interactive aerosol concentrations in GEM-MACH. Incorporating these changes to the model resulted in an increase in the correlation coefficient from 0.17 to 0.37 between the GEM-MACH model AOD 1-month hourly output and AERONET (Aerosol Robotic Network) measurements across all the North American sites. Comparisons of the updated model AOD with AERONET measurements for selected Canadian urban and industrial sites, specifically, showed better correlation coefficients for urban AERONET sites and for stations located further south in the domain for both simulation periods (June and January 2018). The predicted monthly averaged AOD using the improved photolysis module followed the spatial patterns of MERRA-2 reanalysis (Modern-Era Retrospective analysis for Research and Applications – version 2), with an overall underprediction of AOD over the common domain for both seasons. Our study also suggests that the domain-wide impacts of direct and indirect effect aerosol feedbacks on the photolysis rates from meteorological changes are considerably greater (3 to 4 times) than the direct aerosol optical effect on the photolysis rate calculations.


Author(s):  
Joana V. Barbosa ◽  
Rafael A. O. Nunes ◽  
Maria C. M. Alvim-Ferraz ◽  
Fernando G. Martins ◽  
Sofia I. V. Sousa

Wildland fires release substantial amounts of hazardous contaminants, contributing to a decline in air quality and leading to serious health risks. Thus, this study aimed to understand the contributions of the 2017 extreme wildland fires in Portugal on children health, compared to 2016 (with burned area, in accordance with the average of the previous 15 years). The impact of long-term exposure to PM10 and NO2 concentrations, associated with wildland fires, on postneonatal mortality, bronchitis prevalence, and bronchitis symptoms in asthmatic children was estimated, as well as the associated costs. The excess health burden in children attributable to exposure to PM10 and NO2, was calculated based on WHO HRAPIE relative risks. Fire emissions were obtained from the Fire INventory from NCAR (FINN). The results obtained indicate that the smoke from wildfires negatively impacts children’s lung function (PM10 exposure: increase of 320 and 648 cases of bronchitis in 2016 and 2017; NO2 exposure: 24 and 40 cases of bronchitis symptoms in asthmatic children in 2016 and 2017) and postneonatal mortality (PM10 exposure: 0.2 and 0.4 deaths in 2016 and 2017). Associated costs were increased in 2017 by around 1 million € for all the evaluated health endpoints, compared to 2016.


2021 ◽  
Author(s):  
John Worden ◽  
Daniel Cusworth ◽  
Zhen Qu ◽  
Yi Yin ◽  
Yuzhong Zhang ◽  
...  

Abstract. We present 2019 global methane (CH4) emissions and uncertainties, by sector, at 1-degree and country-scale resolution based on a Bayesian integration of satellite data and inventories. Globally, we find that agricultural and fire emissions are 227 +/− 19 Tg CH4/yr, waste is 50 +/− 7 Tg CH4/yr , anthropogenic fossil emissions are 82 +/− 12 Tg CH4/yr, and natural wetland/aquatic emissions are 180 +/− 10 Tg CH4/yr. These estimates are intended as a pilot dataset for the Global Stock Take in support of the Paris Agreement. However, differences between the emissions reported here and widely-used bottom-up inventories should be used as a starting point for further research because of potential systematic errors of these satellite based emissions estimates. Calculation of emissions and uncertainties: We first apply a standard optimal estimation (OE) approach to quantify CH4 fluxes using Greenhouse Gases Observing Satellite (GOSAT) total column CH4 concentrations and the GEOS-Chem global chemistry transport model. Second, we use a new Bayesian algorithm that projects these posterior fluxes to emissions by sector to 1 degree and country-scale resolution. This algorithm can also quantify uncertainties from measurement as well as smoothing error, which is due to the spatial resolution of the top-down estimate combined with the assumed structure in the prior emission uncertainties. Detailed Results: We find that total emissions for approximately 58 countries can be resolved with this observing system based on the degrees-of-freedom for signal (DOFS) metric that can be calculated with our Bayesian flux estimation approach. We find the top five emitting countries (Brazil, China, India, Russia, USA) emit about half of the global anthropogenic budget, similar to our choice of prior emissions. However, posterior emissions for these countries are mostly from agriculture, waste and fires (~129 Tg CH4/yr) with ~45 Tg CH4/yr from fossil emissions, as compared to prior inventory estimates of ~88 and 60 Tg CH4/yr respectively, primarily because the satellite observed concentrations are larger than expected in regions with substantive livestock activity. Differences are outside of 1-sigma uncertainties between prior and posterior for Brazil, India, and Russia but are consistent for China and the USA. The new Bayesian algorithm to quantify emissions from fluxes also allows us to “swap priors” if better informed or alternative priors and/or their covariances are available for testing. For example, recent bottom-up literature supposes greatly increased values for wetland/aquatic as well as fossil emissions. Swapping in priors that reflect these increased emissions results in posterior wetland emissions or fossil emissions that are inconsistent (differences greater than calculated uncertainties) with these increased bottom-up estimates, primarily because constraints related to the methane sink only allow total emissions across all sectors of ~560 Tg CH4/yr and because the satellite based estimate well constrains the spatially distinct fossil and wetland emissions. Given that this observing system consisting of GOSAT data and the GEOS-Chem model can resolve much of the different sectoral and country-wide emissions, with ~402 DOFS for the whole globe, our results indicate additional research is needed to identify the causes of discrepancies between these top-down and bottom-up results for many of the emission sectors reported here. In particular, the impact of systematic errors in the methane retrievals and transport model employed should be assessed where differences exist. However, our results also suggest that significant attention must be provided to the location and magnitude of emissions used for priors in top-down inversions; for example, poorly characterized prior emissions in one region and/or sector can affect top-down estimates in another because of the limited spatial resolution of these top-down estimates. Satellites such as the Tropospheric Monitoring Instrument (TROPOMI) and those in formulation such as the Copernicus CO2M, Methane-Sat, or Carbon Mapper offer the promise of much higher resolution fluxes relative to GOSAT assuming they can provide data with comparable or better accuracy, thus potentially reducing this uncertainty from poorly characterized emissions. These higher resolution estimates can therefore greatly improve the accuracy of emissions by reducing smoothing error. Fluxes calculated from other sources can also in principal be incorporated in the Bayesian estimation framework demonstrated here for the purpose of reducing uncertainty and improving the spatial resolution and sectoral attribution of subsequent methane emissions estimates.


2021 ◽  
Vol 21 (23) ◽  
pp. 17529-17557
Author(s):  
Francisco J. Pérez-Invernón ◽  
Heidi Huntrieser ◽  
Sergio Soler ◽  
Francisco J. Gordillo-Vázquez ◽  
Nicolau Pineda ◽  
...  

Abstract. Lightning is the major cause of the natural ignition of wildfires worldwide and produces the largest wildfires in some regions. Lightning strokes produce about 5 % of forest fires in the Mediterranean Basin and are one of the most important precursors of the largest forest fires during the summer. Lightning-ignited wildfires produce significant emissions of aerosols, black carbon, and trace gases, such as CO, SO2, CH4, and O3, affecting air quality. Characterization of the meteorological and cloud conditions of lightning-ignited wildfires in the Mediterranean Basin can serve to improve fire forecasting models and to upgrade the implementation of fire emissions in atmospheric models. This study investigates the meteorological and cloud conditions of lightning-ignited wildfires (LIWs) and long continuing current (LCC) lightning flashes in the Iberian Peninsula and Greece. LCC lightning and lightning in dry thunderstorms with a low precipitation rate have been proposed to be the main precursors of the largest wildfires. We use lightning data provided by the World Wide Lightning Location Network (WWLLN), the Earth Networks Total Lightning Network (ENTLN), and the Lightning Imaging Sensor (LIS) on board the International Space Station (ISS), together with four databases of wildfires produced in Spain, Portugal, southern France, and Greece, respectively, in order to produce a climatology of LIWs and LCC lightning over the Mediterranean Basin. In addition, we use meteorological data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data set and by the Spanish State Meteorological Agency (AEMET), together with the Cloud Top Height product (CTHP) derived from Meteosat Second Generation (MSG) satellites measurements to investigate the meteorological conditions of LIWs and LCC lightning. According to our results, LIWs and a significant amount of LCC lightning flashes tend to occur in dry thunderstorms with weak updrafts. Our results suggest that LIWs tend to occur in clouds with a high base and with a vertical content of moisture lower than the climatological value, as well as with a higher temperature and a lower precipitation rate. Meteorological conditions of LIWs from the Iberian Peninsula and Greece are in agreement, although some differences possibly caused by the highly variable topography in Greece and a more humid environment are observed. These results show the possibility of using the typical meteorological and cloud conditions of LCC lightning flashes as proxy to parameterize the ignition of wildfires in atmospheric or forecasting models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
L. Kiely ◽  
D. V. Spracklen ◽  
S. R. Arnold ◽  
E. Papargyropoulou ◽  
L. Conibear ◽  
...  

AbstractDeforestation and drainage has made Indonesian peatlands susceptible to burning. Large fires occur regularly, destroying agricultural crops and forest, emitting large amounts of CO2 and air pollutants, resulting in adverse health effects. In order to reduce fire, the Indonesian government has committed to restore 2.49 Mha of degraded peatland, with an estimated cost of US$3.2-7 billion. Here we combine fire emissions and land cover data to estimate the 2015 fires, the largest in recent years, resulted in economic losses totalling US$28 billion, whilst the six largest fire events between 2004 and 2015 caused a total of US$93.9 billion in economic losses. We estimate that if restoration had already been completed, the area burned in 2015 would have been reduced by 6%, reducing CO2 emissions by 18%, and PM2.5 emissions by 24%, preventing 12,000 premature mortalities. Peatland restoration could have resulted in economic savings of US$8.4 billion for 2004–2015, making it a cost-effective strategy for reducing the impacts of peatland fires to the environment, climate and human health.


2021 ◽  
Vol 12 (4) ◽  
pp. 1191-1237
Author(s):  
Thomas Luke Smallman ◽  
David Thomas Milodowski ◽  
Eráclito Sousa Neto ◽  
Gerbrand Koren ◽  
Jean Ometto ◽  
...  

Abstract. Identification of terrestrial carbon (C) sources and sinks is critical for understanding the Earth system as well as mitigating and adapting to climate change resulting from greenhouse gas emissions. Predicting whether a given location will act as a C source or sink using terrestrial ecosystem models (TEMs) is challenging due to net flux being the difference between far larger, spatially and temporally variable fluxes with large uncertainties. Uncertainty in projections of future dynamics, critical for policy evaluation, has been determined using multi-TEM intercomparisons, for various emissions scenarios. This approach quantifies structural and forcing errors. However, the role of parameter error within models has not been determined. TEMs typically have defined parameters for specific plant functional types generated from the literature. To ascertain the importance of parameter error in forecasts, we present a Bayesian analysis that uses data on historical and current C cycling for Brazil to parameterise five TEMs of varied complexity with a retrieval of model error covariance at 1∘ spatial resolution. After evaluation against data from 2001–2017, the parameterised models are simulated to 2100 under four climate change scenarios spanning the likely range of climate projections. Using multiple models, each with per pixel parameter ensembles, we partition forecast uncertainties. Parameter uncertainty dominates across most of Brazil when simulating future stock changes in biomass C and dead organic matter (DOM). Uncertainty of simulated biomass change is most strongly correlated with net primary productivity allocation to wood (NPPwood) and mean residence time of wood (MRTwood). Uncertainty of simulated DOM change is most strongly correlated with MRTsoil and NPPwood. Due to the coupling between these variables and C stock dynamics being bi-directional, we argue that using repeat estimates of woody biomass will provide a valuable constraint needed to refine predictions of the future carbon cycle. Finally, evaluation of our multi-model analysis shows that wood litter contributes substantially to fire emissions, necessitating a greater understanding of wood litter C cycling than is typically considered in large-scale TEMs.


2021 ◽  
Vol 13 (22) ◽  
pp. 4611
Author(s):  
Max J. van Gerrevink ◽  
Sander Veraverbeke

Fire severity represents fire-induced environmental changes and is an important variable for modeling fire emissions and planning post-fire rehabilitation. Remotely sensed fire severity is traditionally evaluated using the differenced normalized burn ratio (dNBR) derived from multispectral imagery. This spectral index is based on bi-temporal differenced reflectance changes caused by fires in the near-infrared (NIR) and short-wave infrared (SWIR) spectral regions. Our study aims to evaluate the spectral sensitivity of the dNBR using hyperspectral imagery by identifying the optimal bi-spectral NIR SWIR combination. This assessment made use of a rare opportunity arising from the pre- and post-fire airborne image acquisitions over the 2013 Rim and 2014 King fires in California with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. The 224 contiguous bands of this sensor allow for 5760 unique combinations of the dNBR at a high spatial resolution of approximately 15 m. The performance of the hyperspectral dNBR was assessed by comparison against field data and the spectral optimality statistic. The field data is composed of 83 in situ measurements of fire severity using the Geometrically structured Composite Burn Index (GeoCBI) protocol. The optimality statistic ranges between zero and one, with one denoting an optimal measurement of the fire-induced spectral change. We also combined the field and optimality assessments into a combined score. The hyperspectral dNBR combinations demonstrated strong relationships with GeoCBI field data. The best performance of the dNBR combination was derived from bands 63, centered at 0.962 µm, and 218, centered at 2.382 µm. This bi-spectral combination yielded a strong relationship with GeoCBI field data of R2 = 0.70 based on a saturated growth model and a median spectral index optimality statistic of 0.31. Our hyperspectral sensitivity analysis revealed optimal NIR and SWIR bands for the composition of the dNBR that are outside the ranges of the NIR and SWIR bands of the Landsat 8 and Sentinel-2 sensors. With the launch of the Precursore Iperspettrale Della Missione Applicativa (PRISMA) in 2019 and several planned spaceborne hyperspectral missions, such as the Environmental Mapping and Analysis Program (EnMAP) and Surface Biology and Geology (SBG), our study provides a timely assessment of the potential and sensitivity of hyperspectral data for assessing fire severity.


2021 ◽  
Vol 10 (15) ◽  
pp. e08101522619
Author(s):  
Vinícius de Freitas Silgueiro ◽  
Carolina Ortiz Costa Franco de Souza ◽  
Eriberto Oliveira Muller ◽  
Carolina Joana da Silva

In 2020, a total of 3.9 million hectares were burned in the Pantanal biome, which represents approximately 30% of its total area. Of the three existing biomes in the state of Mato Grosso, the Pantanal was the most impacted and, among all the municipalities in Mato Grosso, Poconé had the largest burned area. We aimed to characterize the areas affected by fires in the municipality of Poconé in 2020 to support prevention and adaptation actions in future scenarios. For this, we used the mapping of areas affected by fires made from the detections of active fire collected by the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor and available by the Global Fire Emissions Database (GFED). The results showed that a total of 869,170 hectares were burned in Poconé in 2020. Of this total, 97.3% were in natural areas, viz. forest formations (37%), savanna (2.8%), grassland formations (23.4%), wetlands (29.7%), and vegetation in dried-up rivers and lakes (4.4%). Concerning land categories, almost half of the fires occurred in private rural properties registered in the Rural Environmental Registry (CAR). In this scenario, we highlighted the importance of monitoring fires and holding those responsible for them accountable. It is also important to implement preventive actions in synergy with managers and local communities as a way of adapting to the climate crisis, intense drought, and less water surface available in the region, which increases the risk and damage of fires.


2021 ◽  
Vol 14 (10) ◽  
pp. 6515-6539
Author(s):  
João C. Teixeira ◽  
Gerd A. Folberth ◽  
Fiona M. O'Connor ◽  
Nadine Unger ◽  
Apostolos Voulgarakis

Abstract. Fire constitutes a key process in the Earth system (ES), being driven by climate as well as affecting the climate by changing atmospheric composition and impacting the terrestrial carbon cycle. However, studies on the effects of fires on atmospheric composition, radiative forcing and climate have been limited to date, as the current generation of ES models (ESMs) does not include fully atmosphere–composition–vegetation coupled fires feedbacks. The aim of this work is to develop and evaluate a fully coupled fire–composition–climate ES model. For this, the INteractive Fires and Emissions algoRithm for Natural envirOnments (INFERNO) fire model is coupled to the atmosphere-only configuration of the UK's Earth System Model (UKESM1). This fire–atmosphere interaction through atmospheric chemistry and aerosols allows for fire emissions to influence radiation, clouds and generally weather, which can consequently influence the meteorological drivers of fire. Additionally, INFERNO is updated based on recent developments in the literature to improve the representation of human and/or economic factors in the anthropogenic ignition and suppression of fire. This work presents an assessment of the effects of interactive fire coupling on atmospheric composition and climate compared to the standard UKESM1 configuration that uses prescribed fire emissions. Results show a similar performance when using the fire–atmosphere coupling (the “online” version of the model) when compared to the offline UKESM1 that uses prescribed fire. The model can reproduce observed present-day global fire emissions of carbon monoxide (CO) and aerosols, despite underestimating the global average burnt area. However, at a regional scale, there is an overestimation of fire emissions over Africa due to the misrepresentation of the underlying vegetation types and an underestimation over equatorial Asia due to a lack of representation of peat fires. Despite this, comparing model results with observations of CO column mixing ratio and aerosol optical depth (AOD) show that the fire–atmosphere coupled configuration has a similar performance when compared to UKESM1. In fact, including the interactive biomass burning emissions improves the interannual CO atmospheric column variability and consequently its seasonality over the main biomass burning regions – Africa and South America. Similarly, for aerosols, the AOD results broadly agree with the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET) observations.


2021 ◽  
Author(s):  
Maximilien Jacques Desservettaz ◽  
Jenny A. Fisher ◽  
Ashok K. Luhar ◽  
Matthew Thomas Woodhouse ◽  
Beata Bukosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document