Habitat characteristics of a threatened arboreal marsupial and its resource use in a degraded landscape: the brush-tailed phascogale (Phascogale tapoatafa tapoatafa) in central Victoria, Australia

2017 ◽  
Vol 44 (2) ◽  
pp. 153 ◽  
Author(s):  
C. Mansfield ◽  
A. H. Arnold ◽  
T. L. Bell ◽  
A. York

Context Habitat loss and degradation has contributed significantly to the decline of many species worldwide. To address this loss, we first require a comprehensive understanding of habitat requirements and resource-use patterns of the species under threat. Aims The study aimed to quantify variation in the habitat of a species threatened by habitat loss and degradation, the brush-tailed phascogale (Phascogale tapoatafa tapoatafa), by measuring several physical characteristics of trees and ground cover, as well as to determine potential foraging resource preferences using abundance data from a long-term monitoring study. Methods Phascogale monitoring surveys were conducted over a 13-year period from 2000 to 2012. Habitat variables characterising tree communities, ground cover and coarse woody debris were used to develop explanatory models of phascogale abundance at the site scale. Tree species preference by foraging phascogales was evaluated by comparing usage (trees on which they were captured) and availability. Key results The highest overall animal abundance was at sites characterised by associations of red stringybark, red box, grey box and broad-leaved and narrow-leaved peppermints. At these sites, red stringybark and grey box trees were of small diameter and tended to have small hollows. These sites also had low average tree height, low grass and/or herb and shrub cover and low volumes of coarse woody debris. From a resource-use perspective, phascogales foraged preferentially on certain species of Eucalyptus. Conclusions Our study suggests that phascogale abundance is highly spatially and temporally variable, most likely as a response to heterogeneity in habitat and foraging resources operating at a range of spatial scales. Implications This study has provided new information concerning spatial patterns of phascogale abundance and resource use within a forested area in central Victoria that has been subjected to multiple disturbances. Currently, the composition and age structure of tree communities and ground habitats are a response to severe disturbance due to past mining and harvesting activities. Successful conservation of this threatened species could be enhanced through active management of this forest to maintain the ongoing supply of nesting hollows and foraging resources.

2021 ◽  
Vol 42 (24) ◽  
pp. 9316-9342
Author(s):  
Shukhrat Shokirov ◽  
Michael Schaefer ◽  
Shaun R. Levick ◽  
Tommaso Jucker ◽  
Justin Borevitz ◽  
...  

2014 ◽  
Vol 62 (7) ◽  
pp. 570 ◽  
Author(s):  
S. McIntyre ◽  
R. B. Cunningham ◽  
C. F. Donnelly ◽  
A. D. Manning

We report on the effects of broad-scale restoration treatments on the ground layer of eucalypt grassy woodland in south-eastern Australia. The experiment was conducted in two conservation reserves from which livestock grazing had previously been removed. Changes in biomass, species diversity, ground-cover attributes and life-form were analysed over a 4-year period in relation to the following experimental interventions: (1) reduced kangaroo density, (2) addition of coarse woody debris and (3) fire (a single burn). Reducing kangaroo density doubled total biomass in one reserve, but no effects on exotic biomass, species counts or ground cover attributes were observed. Coarse woody debris also promoted biomass, particularly exotic annual forbs, as well as plant diversity in one of the reserves. The single burn reduced biomass, but changed little else. Overall, we found the main driver of change to be the favourable growth seasons that had followed a period of drought. This resulted in biomass increasing by 67%, (mostly owing to the growth of perennial native grasses), whereas overall native species counts increased by 18%, and exotic species declined by 20% over the 4-year observation period. Strategic management of grazing pressure, use of fire where biomass has accumulated and placement of coarse woody debris in areas of persistent erosion will contribute to improvements in soil and vegetation condition, and gains in biodiversity, in the future.


Biotropica ◽  
2021 ◽  
Author(s):  
Ekaterina Shorohova ◽  
Ekaterina Kapitsa ◽  
Andrey Kuznetsov ◽  
Svetlana Kuznetsova ◽  
Valentin Lopes de Gerenuy ◽  
...  

2021 ◽  
pp. e01637
Author(s):  
Francesco Parisi ◽  
Michele Innangi ◽  
Roberto Tognetti ◽  
Fabio Lombardi ◽  
Gherardo Chirici ◽  
...  

Ecosystems ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 541-554
Author(s):  
Adam Gorgolewski ◽  
Philip Rudz ◽  
Trevor Jones ◽  
Nathan Basiliko ◽  
John Caspersen

2002 ◽  
Vol 10 (4) ◽  
pp. 627-635 ◽  
Author(s):  
Ralph MacNally ◽  
Amber Parkinson ◽  
Gregory Horrocks ◽  
Matthew Young

Sign in / Sign up

Export Citation Format

Share Document